Long Short-Term Memory
in Recurrent Neural Networks

THESE N° 2366 (2001)

PRESENTEE AU DEPARTEMENT D'INFORMATIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR LOBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

FELIX GERS

Diplom in Physik, Universitat Hannover, Deutschland
de nationalité allemand

soumise a I'approbation du jury:

Prof. R. Hersch, président
Prof. Wulfram Gerstner, directeur de thése
Dr. habil. Jirgen Schmidhuber, corapporteur
Prof. Paolo Frasconi, corapporteur
Dr. MER Martin Rajman, corapporteur

Lausanne, EPFL
2001

LoONG SHORT-TERM MEMORY
IN RECURRENT NEURAL NETWORKS

Contents

1 Introduction
1.1 Recurrent Neural Networks (RNNs)
1.2 General considerations.o
1.2.1 Problem: Exponential decay of gradient information.
1.2.2 Solution: Constant error carousels. L.
1.3 Previous and Related Worko o oL
1.3.1 RNNs . . o
1.3.2 RNNSs versus Other Sequence Processing Approaches
1.4 Outline e e e e e e
2 Traditional LSTM
2.1 Forward Pass e
2.2 Learning oL
2.3 Tasks Solved with Traditional LSTM
3 Learning to Forget: Continual Prediction with LSTM
3.1 Imtroduction L e e
3.1.1 Limits of traditional LSTM
3.2 Solution: Forget Gates L
3.2.1 Forward Pass of Extended LSTM with Forget Gates
3.2.2 Backward Pass of Extended LSTM with Forget Gates
3.2.3 Complexity e e
3.3 Experiments. e e e e
3.3.1 Continual Embedded Reber Grammar Problem
3.3.2 Network Topology and Parameters
3.33 CERGResults e
3.3.4 Analysis of the CERG Results
3.3.5 Continual Noisy Temporal Order Problem
3.4 Conclusion L e e
4 Arithmetic Operations on Continual Input Streams
4.1 Introduction. e e e e e e e
4.2 Experiments. L
4.2.1 Network Topology and Parameters
422 Results e
4.3 Conclusion L

iii

N=lNe N BN e = I)

11
12
13
14

15
15
15
16
16
17
20
21
21
23
24
25
25
28

v

5 Learning Precise Timing with Peephole LSTM

5.1 Introduction. e
5.2 Extending LSTM with “Peephole Connections”
53 Forward Pass
5.4 Gradient-Based Backward Pass
5.5 Experiments.o e
5.5.1 Network Topology and Experimental Parameters
5.5.2 Measuring Spike Delays (MSD)
5.5.3 Generating Timed Spikes (GTS).
5.5.4 Periodic Function Generation (PFG)
5.5.5 General Observation: Network initialization
5.6 Conclusion e

6 Simple Context Free and Context Sensitive Languages

6.1 Introduction. e
6.2 Experiments. e
6.2.1 Training and Testing
6.2.2 Network Topology and Experimental Parameters
6.2.3 Previousresults. Lo oo
6.24 LSTM Results
6.2.5 Analysis
6.3 Conclusion e

7 Time Series Predictable Through Time-Window Approaches

7.1 Introduction. L
7.2 Experimental Setup oL
7.2.1 Network Topology
7.3 Mackey-Glass Chaotic Time Series
7.3.1 Previous Work oo
7.3.2 Results
733 Analysis e
7.4 TLaser Data e
74.1 Previous Work o oo
742 Results L
74.3 Analysis
7.5 Conclusion e

8 Conclusion

8.1 Main Contributions 0.,
8.2 Future work and possible applications of LSTM.

A Embedded Reber Grammar Statistics
B Peephole LSTM with Forget Gates in Pseudo-code
References

Personal Record

CONTENTS

75

....... 75
....... 76

77

79

83

90

CONTENTS

Acknowledgments

94

vi

CONTENTS

CONTENTS 1

This thesis is based on the following publications:
Chapter 2

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10), 2451-2471.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999b). Learning to forget: Continual
prediction with LSTM. In Proc. ICANN’99, Int. Conf. on Artificial Neural Networks
(Vol. 2, p. 850-855). Edinburgh, Scotland: IEE, London.

Chapter 3

Gers, F. A., & Schmidhuber, J. (2000c). Neural processing of complex continual input
streams. In Proc. IJCNN’2000, Int. Joint Conf. on Neural Networks. Como, Italy.

Chapter 4

Gers, F. A., & Schmidhuber, J. (2000e). Recurrent nets that time and count. In Proc.
IJCNN’2000, Int. Joint Conf. on Neural Networks. Como, Italy.

Gers, F. A., Schmidhuber, J., & Schraudolph, N. Learning precise timing with LSTM
recurrent networks. (submitted to Neural Computation)

Chapter 5

Gers, F. A., & Schmidhuber, J. (2001). Long short-term memory learns simple context
free and context sensitive languages. IEEE Transactions on Neural Networks. (accepted)

Gers, F. A., & Schmidhuber, J. Long short-term memory learns context free and context
sensitive languages. In ICANNGA 2001 Conference. (accepted)

Chapter 6

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time series predictable
through time-window approaches. In Proc. ICANN 2001, Int. Conf. on Artificial Neural
Networks. Vienna, Austria: IEE, London. (submitted)

Other publications: (IDSIA technical reports are not listed, see www.idsia.ch.)

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999a). Continual prediction using LSTM
with forget gates. In M. Marinaro & R. Tagliaferri (Eds.), Neural Nets, WIRN Vietri-99,
Proceedings 11th Workshop on Neural Nets (p. 133-138). Vietri sul Mare, Italy: Springer
Verlag, Berlin.

Gers, F. A., & Schmidhuber, J. (2000a). LSTM learns context free languages. In Snowbird
2000 Conference.

Cummins, F., Gers, F., & Schmidhuber, J. (1999). Language identification from prosody
without explicit features. In Proceedings of EUROSPEECH’99 (Vol. 1, pp. 371-37 4).

2 CONTENTS

Abstract

For a long time, recurrent neural networks (RNNs) were thought to be theoretically fascinating.
Unlike standard feed-forward networks RNNs can deal with arbitrary input sequences instead
of static input data only. This combined with the ability to memorize relevant events over time
makes recurrent networks in principal more powerful than standard feed-forward networks. The
set of potential applications is enormous: any task that requires to learn how to use memory is a
potential task for recurrent networks. Potential application areas include time series prediction,
motor control in non-Markovian environments and rhythm detection (in music and speech).

Previous successes in real world applications, with recurrent networks were limited, however,
due to practical problems when long time lags between relevant events make learning difficult.
For these applications conventional gradient-based recurrent network algorithms for learning to
store information over eztended time intervals take too long. The main reason for this failure is
the rapid decay of back-propagated error. The “Long Short Term Memory” (LSTM) algorithm
overcomes this and related problems by enforcing constant error flow. Using gradient descent,
LSTM explicitly learns when to store information and when to access it.

In this thesis we extend, analyze, and apply the LSTM algorithm. In particular, we identify
two weaknesses of LSTM, offer solutions and modify the algorithm accordingly: (1) We recognize
a weakness of LSTM networks processing continual input streams that are not a priori segmented
into subsequences with explicitly marked ends at which the network’s internal state could be
reset. Without resets, the state may grow indefinitely and eventually cause the network to break
down. Our remedy is a novel, adaptive “forget gate” that enables an LSTM cell to learn to reset
itself at appropriate times, thus releasing internal resources. (2) We identify a weakness in
LSTM’s connection scheme, and extend it by introducing “peephole connections” from LSTM’s
“Constant Error Carousel” to the multiplicative gates protecting them. These connections
provide the gates with explicit information about the state to which they control access. We
show that peephole connections are necessary for numerous tasks and do not significantly affect
LSTM’s performance on previously solved tasks.

We apply the extended LSTM with forget gates and peephole connections to tasks that no
other RNN algorithm can solve (including traditional LSTM): Grammar tasks and temporal
order tasks involving continual input streams, arithmetic operation on continual input streams,
tasks that require precise, continual timing, periodic function generation and context free and
context sensitive language tasks. Finally we establish limits of LSTM on time series prediction
problems solvable by time window approaches.

CONTENTS 3

Sommario

Per molto tempo le reti neuronali ricorrenti sono state considerate teoricamente affascinanti.
Le reti ricorrenti possono trattare naturalmente sequenze di dati invece di poter ricevere solo
dati statici in input. Possono imparare a memorizzare gli eventi importanti. Queste capacita
le rendono in linea di principio pii potenti delle reti feed-forward. La classe di potenziali
applicazioni ¢ ampia: essa contiene ogni problema che richiede 1'uso di memoria interna. Alcuni
esempi sono la previsione delle serie storiche (time series prediction), il controllo del moto (motor
control) in ambienti non Markoviani e il riconoscimento del ritmo (per esempio nella musica o
nella lingua parlata).

D’altra parte, sinora le reti ricorrenti anno avuto poco successo nell’applicazione a problemi
reali caratterizzati da intervalli temporali lunghi tra eventi importanti dell’input. Gli algo-
ritmi convenzionali di apprendimento, basati sul gradiente, hanno bisogno di troppo tempo per
imparare a memorizzare delle informazioni con intervalli temporali lunghi. La ragione prin-
cipale & la rapida decrescita dell’errore retropropagato (back-propagation error). Le reti di
tipo long-short term memory (LSTM) offrono una soluzione a questo problema, proponendo
un’architettura dove il flusso dell’errore rimane costante. Usando 'inclinazione del gradiente
(gradient descent), le reti LSTM possono imparare quando un’informazione deve essere memo-
rizzata e quando va successivamente usata.

Questa tesi analizza, estende ed applica ’algoritmo LSTM. Si identificano due difetti dell’algoritmo
preesistente é si propongono due estensioni principali dell’algoritmo che risolvono i problemi
riscontrati. In particolare: (1) viene identificato un difetto dell’algoritmo LSTM che accade
quando l'input é contiguo, cioé non a priori suddiviso in sottosequenze con inizi e fini distinti.
In questo caso, l'algoritmo non ¢ in grado di determinare quando la rete va riportata allo stato
iniziale e i valori interni possono crescere illimitatamente causando una paralisi del sistema.
11 rimedio proposto si basa su una nuova unitd moltiplicativa (gate unit) adattabile chiamato
“forget gate”. Essa permette ad una cella della rete LSTM di imparare a ritornare ad uno stato
precedente in momenti opportuni, liberando cosi risorse interne.

(2) Si identifica un difetto nello schema delle connessioni delle reti LSTM e lo si risolve intro-
ducendo connessioni chiamate “peephole connections”. Esse collegano 1'unita centrale (“con-
stant error carousel”) delle celle alle unita moltiplicative che le stanno attorno. In questo modo
vengono fornite alle unitd informazioni esplicite sulla condizione dell’oggetto di cui controllano
P’accesso. Si mostra inoltre che le peephole connections sono necessarie per numerosi problemi
e che non riducono significativamente la performance delle reti LSTM su problemi precedente-
mente affrontati.

La tesi applica I'algoritmo LSTM esteso con forget gates e peephole connections a problemi
che nessun altro algoritmo per reti ricorrenti puo risolvere (compreso le reti LSTM tradizionali):
problemi di grammatica; problemi di ordinamenti temporali che coinvolgono input continui; op-
erazioni aritmetiche su input continuo; problemi che richiedono una continua e precisa misura
del tempo; la generazione di funzioni periodiche e riconoscimento di grammatiche context-free
e context-sensitive. Infine si identificano dei limiti dell’algoritmo LSTM esteso relativi a prob-
lemi di previsione di serie storiche che sono risolvibili dalla classe di metodi basati su finestre
temporali.

CONTENTS

Chapter 1

Introduction

The goal of this Ph.D. thesis is to extend, analyze, and apply a recent, novel, promising gradient
learning algorithm for recurrent neural networks (RNNs). The algorithm is called “Long Short
Term Memory” (LSTM). It was introduced by Hochreiter and Schmidhuber (1997).

1.1 Recurrent Neural Networks (RNNs)

The RNNs we consider here consist of units interacting in discrete time via directed, weighted
connections with weights w;,,, (from unit m to unit /). Every unit has an activation y(¢) updated
at every time ¢t = 1,2,.... The activations of the units feeding into other units form the state
of the network. An activation y' of unit [is updated by computing its network input sum net!,

net!(t) =) wim y"(t-1)

and “squashing” it with a differentiable function f, according:

y'(t) = f(net' (1))

Input and output to the network are time-varying series of vector-patterns called sequences.

We define learning in RNNs as optimizing a differentiable objective function E, summed over
all time steps of all sequences. by adapting the connection weights. E is based on supervised
targets t*, where k indexes the output units of the network with activations y*. An example is
the squared error objective function:

)= 2 S exlt)” ; exlt) = 5(1) — (1) |
k

where ej, denotes the externally injected error; F(t) represents the error at time ¢ for one sequence
component called pattern. For a typical data set consisting of sequences of patterns, E is the
sum of E(t) over all patterns of all sequences in the set.

5

6 CHAPTER 1. INTRODUCTION

RO

S 9@

Figure 1.1: Left: Feed-forward neural network. Middle: Layered network with an input layer, a
fully recurrent hidden layer and an output layer. Right: Fully connected recurrent network.

A gradient descent learning algorithm for RNNs, such as LSTM, computes the gradient of
FE with respect to each weight wy,, to determine the weight changes Awyy,:
0E(t)
Awy,(t) = —a Dwn,
where « is called the learning rate. For an excellent introduction to gradient learning in RNNs
see Williams and Zipser (1992).

The connection scheme of a network is called the network architecture or topology. Architec-
tures without loops are called feed-forward neural networks (Figure 1.1, left). RNN topologies
range from partly recurrent, to fully recurrent networks. An example of a partly recurrent net-
work is a layered network with distinct input and output layers, where the recurrence is limited
to the hidden layer(s), as shown in the middle of Figure 1.1. In fully recurrent networks each
node gets input from all other nodes (Figure 1.1, right).

1.2 General considerations.

RNNSs constitute a very powerful class of computational models, capable of instantiating almost
arbitrary dynamics (Siegelmann & Sontag, 1991).

Usually two basic types of RNN are distinguished: autonomous RNNs with converging dy-
namics where the input is fixed, for example Hopfield networks (Hopfield, 1982) or Boltzmann
machines (Hinton, Sejnowski, & Ackley, 1984), versus non-autonomous RNNs with time-varying
inputs. The RNNs considered in this thesis are of the latter class. They can perform gradi-
ent descent in a very general space of potentially noise-resistant algorithms using distributed,
continuous-valued internal states. The ability to map real-valued input sequences to real-valued
output sequences, making use of their internal state to incorporate past context, makes them
a remarkably general sequence processing devices (Bengio, Frasconi, Gori, & G.Soda, 1993).
RNNs are especially promising for tasks that require to learn how to use memory. Potential
applications are: time series prediction (e.g., of financial series), time series production (e.g.,
motor control in non-Markovian environments) and time series classification or labeling (e.g.,
rhythm detection in music and speech).

1.3. PREVIOUS AND RELATED WORK 7

1.2.1 Problem: Exponential decay of gradient information.

The extent to which this potential can be exploited, is however limited by the effectiveness of
the training procedure applied. Gradient based methods (see survey: (Pearlmutter, 1995))—
“Back-Propagation Through Time” (Williams & Zipser, 1992; Werbos, 1988) or “Real-Time
Recurrent Learning” (Robinson & Fallside, 1987; Williams & Zipser, 1992) and their combination
(Schmidhuber, 1992a)—share an important limitation. The temporal evolution of the path
integral over all error signals “flowing back in time” exponentially depends on the magnitude
of the weights (Hochreiter, 1991). This implies that the back-propagated error quickly either
vanishes or blows up (Hochreiter & Schmidhuber, 1997; Bengio, Simard, & Frasconi, 1994;
Schmidhuber, 1992b). Hence standard RNNs fail to learn in the presence of long time lags
between relevant input and target events. Tasks with time lags greater than 5-10 already
become difficult for then to learn within reasonable time (Hochreiter & Schmidhuber, 1997). The
vanishing error problem casts doubt on whether standard RNNs can indeed exhibit significant
practical advantages over time-window-based feed-forward networks (Hochreiter, 1991; Bengio
et al., 1994).

1.2.2 Solution: Constant error carousels.

The LSTM algorithm overcomes this problem by enforcing non-decaying error flow “back into
time.” It can learn to bridge minimal time lags in excess of 1000 discrete time steps (Hochreiter &
Schmidhuber, 1997) by enforcing constant error flow through “constant error carrousels” (CECs)
within special units, called cells. Multiplicative gate units learn to open and close access to the
cells. Thus LSTM rather quickly solves many tasks traditional RNNs cannot solve. LSTM’s
learning algorithm is local in space and time; its computational complexity per time step and
weight for standard topologies is O(1).

1.3 Previous and Related Work

In this section we will give a brief overview on alternative approaches for time series process-
ing and provide pointers to the original works. Throughout the thesis we will discuss their
applicability for the various tasks we investigate.

Time window approaches. Any static pattern matching device (e.g., feed-forward net-
work) with a fixed time window of recent inputs can serve as temporal sequence processing
system. This approach has several significant drawbacks: (1) It is difficult to determine the op-
timal time window size, it there is any. (2) For tasks with long-term dependencies a large input
window is necessary. A solution might be to use a combination of several time windows. But
this is only applicable when the exact long-term dependencies of the task are known, which is
usually not the case. (3) Fixed time windows are inadequate when a task has changing long-term
dependencies.

An RNN approach, on the other hand, can avoid these problems, because RNNs do in
principle not need access to the past. They can potentially learn to extract and represent a
Markov state.

1.3.1 RNNs

Elman networks and RNNs with context units. In Elman network the content of the
hidden units is copied into so called context units, which feed back into the hidden layer (Elman,

8 CHAPTER 1. INTRODUCTION

1990). (This topology is equivalent to a network with a hidden layer, where each unit feeds into
every other one via time delayed connections with delay one.) Elman nets are trained by back-
propagation (Rumelhart, Hinton, & Williams, 1986); thus they do not even propagate errors
back though time. In alternative approaches with context units the hidden units feed (e.g., fully
connected) into the context units (their number may be different from the number of the hidden
units). Usually BPTT or RTRL (and their truncated versions) are used for training.

Time delay neural networks (TDNNs). Time-Delay Neural Networks (TDNNs) (Haffner
& Waibel, 1992) allow access to past events via cascaded internal delay lines. The interval they
can access depends on the network topology. Thus they suffer from the same problems as
feed-forward networks using a time window.

Nonlinear autoregressive models with exogenous inputs (NARX) networks. NARX
networks (Lin, Horne, Tino, & Giles, 1996), allow for several distinct input time-windows (possi-
bly of size one) with different temporal offsets. They can potentially solve tasks with stationary
long time lags; it remains a problem to determine the right windows. However, when the long
term dependencies are non-stationary the approach fails.

Focused back-propagation. To deal with long time lags, Mozer (1989) uses time constants
which influence activation changes. However, for long time gaps the time constants need external
fine tuning (Mozer, 1992). Sun et al.’s alternative approach (1993) updates the activation of
a recurrent unit by adding the old activation and the (scaled) current net input. The net
input, however, tends to perturb the stored information, which again makes long term storage
impracticable.

Continual, Hierarchical, Incremental Learning and Development (CHILD). Ring
(1994) proposed the CHILD method for bridging long time lags. Whenever a unit in his network
receives conflicting error signals, he adds a higher order unit influencing appropriate connections.
Although his approach can sometimes be extremely fast, to bridge a time lag involving 100 steps
may require the addition of 100 units. The network cannot generalize to sequences with unseen
lag durations.

Chunker systems. Chunker systems (Schmidhuber, 1992b; Mozer, 1992) do have the
ability to bridge arbitrary time lags, but only if the input sequence exhibits locally predictable
regularities.

LSTM. LSTM does not suffer from the problems above. It seems to be the state of the
art method for recurrent networks faced with realistic, long time lags between occurrences of
relevant events.

1.3.2 RNNs versus Other Sequence Processing Approaches

Discrete symbolic grammar learning algorithms (SGLAs). SGLAs (Lee, 1996; Sakak-
ibara, 1997) may faster learn grammatical structure of discrete, noise-free event sequences, but
cannot deal well with noise or with sequences of real-valued inputs (Osborne & Briscoe, 1997).

Hidden Markov models (HMMs). HMMs are widely used approaches to sequence
processing. They are well-suited for noisy inputs and are invariant to non-linear temporal
stretching. This makes HMMs especially successful in speech recognition (they do not care for
the difference between slow and fast versions of a given spoken word). But for many other
tasks HMMs are less suited, because, unlike RNNs, they are limited to discrete state spaces.
This makes their application to many time series task cumbersome and inefficient. For example
for simples counting tasks, HMMs need as many states as the the number of symbols on the
longest sequence that should be counted. Whereas with RNNs the necessary algorithm can be

1.4. OUTLINE 9

instantiated with networks of 2-5 units (Kalinke & Lehmann, 1998; Rodriguez & Wiles, 1998;
Gers & Schmidhuber, 2000e). Thus, in principle RNNs are applicable to tasks beyond the reach
of HMMs.

Input output hidden Markov models (IOHMMs). The input-output HMM archi-
tecture (Bengio & Frasconi, 1995) combines elements of mixture-of-experts, RNNs, and hidden
Markov models, and is adapted via the EM algorithm. To our knowledge, this architecture has
not yet been applied to tasks comparable to the ones discussed here. But it was shown to solve
simple tasks involving long time lags.

Genetic Programming and Program Search. Genetic Programming (see e.g., Dick-
manns et al., 1987; Cramer, 1985; Koza, 1992) and Probabilistic Incremental Program Evolution
(PIPE) (Salustowicz & Schmidhuber, 1997) in principle could search in general algorithm spaces
but are slow due to the absence of gradient information providing a search direction.

Random guessing. For some simple benchmarks weight guessing finds solutions faster
than elaborate gradient algorithms (Hochreiter & Schmidhuber, 1996, 1995; Schmidhuber &
Hochreiter, 1996).

1.4 Outline

Traditional LSTM. Chapter 2 describes the traditional LSTM algorithm as introduced by
Hochreiter and Schmidhuber (1997).

Forget Gates. In Chapter 3 we identify a weakness of LSTM in dealing with continual
input streams that are not a priori segmented into separate training sequences, such that it is
not clear when to reset the network’s internal state. We introduce “forget gates” as a remedy
(Gers, Schmidhuber, & Cummins, 2000, 1999b).

Arithmetic operations. In Chapter 4 we present tasks involving arithmetic operations on
continual input streams that traditional LSTM cannot solve. But LSTM extended with forget
gates has superior arithmetic capabilities and does solve the tasks (Gers & Schmidhuber, 2000c).

Timing, extending LSTM with “peephole connections”. In Chapter 5 we investigate
tasks where the temporal distance between events conveys essential information (this is the case
for numerous sequential tasks such as motor control and rhythm detection). First we identify
a weakness in LSTM’s connection scheme, regarding the wiring of the nonlinear, multiplicative
gates surrounding and protecting LSTM’s constant error carrousels (CEC). We extend LSTM by
introducing “peephole connections” from the CECs to the gates and find that LSTM augmented
by peephole connections can learn precise timing. It learned, for example, the fine distinction be-
tween sequences of spikes separated by either 50 or 49 discrete time steps, without the help of any
short training exemplars (Gers & Schmidhuber, 2000e; Gers, Schmidhuber, & Schraudolph,).

Context free and context sensitive languages. Previous work by Hochreiter and
Schmidhuber (1997) and the our work (see Chapter 3) showed that LSTM outperforms tra-
ditional RNNs on learning regular languages from exemplary training sequences. In Chapter
6 we demonstrate LSTM’s superior performance on context free language (CFL) benchmarks
for recurrent neural networks (RNNs). To the best of our knowledge, LSTM variants are also
the first RNNs to learn a simple context sensitive language (CSL), namely a™b"c" (Gers &
Schmidhuber, 2001,).

Time series prediction. In Chapter 7 LSTM is applied to time series prediction tasks
solvable by time window approaches: the Mackey-Glass series and the Santa Fe FIR laser
emission series (Set A) (Gers, Eck, & Schmidhuber, 2000, 2001).

10

CHAPTER 1. INTRODUCTION

Chapter 2

Traditional LSTM

The basic unit in the hidden layer of an LSTM network is the memory block; it replaces the
hidden units in a “traditional” RNN (Figure 2.1). A memory block contains one or more memory
cells and a pair of adaptive, multiplicative gating units which gate input and output to all cells
in the block. Memory blocks allow cells to share the same gates (provided the task permits this),
thus reducing the number of adaptive parameters. Each memory cell has at its core a recurrently
self-connected linear unit called the “Constant Error Carousel” (CEC), whose activation we call
the cell state. The CEC’s solve the vanishing error problem: in the absence of new input or

Output
Hidden
ock
with
YY) one oo
Cell
Input

Figure 2.1: Left: RNN with one fully recurrent hidden layer. Right: LSTM network with
memory blocks in the hidden layer (only one is shown).

11

12 CHAPTER 2. TRADITIONAL LSTM

N

output gating h }]OUt y@ @Tnetout

ouput gate
output squashing h(Sc)

s—s+gy”‘@1o

CEC: memorizing

in

. . in y -
input gating g y @ =W)
~—n in
input gate
input squashing g(net)
c

/EN

Figure 2.2: The traditional LSTM cell has a linear unit with a recurrent self-connection with
weight 1.0 (CEC). Input and output gate regulate read and write access to the cell whose state
is denoted s.. The function g squashes the cell’s input; h squashes the cell’s output (see text for
details).

error signals to the cell, the CEC’s local error back flow remains constant, neither growing nor
decaying. The CEC is protected from both forward flowing activation and backward flowing
error by the input and output gates respectively. When gates are closed (activation around
zero), irrelevant inputs and noise do not enter the cell, and the cell state does not perturb the
remainder of the network. Figure 2.2 shows a memory block with a single cell.

2.1 Forward Pass

The cell state, s., is updated based on its current state and three sources of input: net. is input
to the cell itself while net;, and net,,; are inputs to the input and output gates.

We consider discrete time steps ¢ = 1,2,.... A single step involves the update of all units
(forward pass) and the computation of error signals for all weights (backward pass). Input gate
activation y*™ and output gate activation y°“* are computed as follows:

netoutj (t) = Zwoutjm ym(t_l)) yOUtj (t) = foutj (netoutj (t))) (2-1)

netinj(t) = Zwinjm ym(t_l); yinj(t) :f’inj(HEtinj(t)) . (22)

2.2. LEARNING 13

Throughout this thesis j indexes memory blocks; v indexes memory cells in block j (with S;
cells), such that ¢j denotes the v-th cell of the j-th memory block; wyy,, is the weight on the
connection from unit m to unit /. Index m ranges over all source units, as specified by the
network topology (if a source unit activation y™(¢—1) refers to an input unit, current external
input y™(t) is used instead). For the gates, f is a logistic sigmoid (with range [0, 1]):

1
flz) = The7 - (2.3)
The input to the cell itself is
netc;? (t) = Z Wetm y"(t-1) , (2.4)
m

which is is squashed by g, a centered logistic sigmoid function with range [—2, 2] (if not specified
differently):

_ 4
1+4e@

g(z) -2 . (2.5)

The internal state of memory cell s.(t) is calculated by adding the squashed, gated input to the
state at the last time step s.(t—1):

Scy (0)=0; Scv (t) = Scy (t—1) + 4™ (t) g(netcg (t)) fort>0. (2.6)

The cell output y¢ is calculated by squashing the internal state s, via the output squashing
function h, and then multiplying (gating) it by the output gate activation y°“*:

cv

Y (t) =y (1) hlser () - (2.7)
h is a centered sigmoid with range [—1,1]:

_ 2
14e

h(z) -1. (2.8)
Finally, assuming a layered network topology with a standard input layer, a hidden layer con-
sisting of memory blocks, and a standard output layer, the equations for the output units &k
are:

netp(t) = Y wpm Y™ (t=1) , y*() = fulnet (1)) (2.9)

where m ranges over all units feeding the output units (typically all cells in the hidden layer,
the input units, but not the memory block gates). As squashing function f; we again use the
logistic sigmoid (2.3). This concludes traditional LSTM’s forward pass.

2.2 Learning

See Hochreiter & Schmidhuber (1997) for details of traditional LSTM’s backward pass. It will

be re-derived and discussed in detail in Section 3.2.2 after the introduction of forget gates.
Essentially, as in truncated BPTT, errors arriving at net inputs of memory blocks and their

gates do not get propagated back further in time, although they do serve to change the incoming

14 CHAPTER 2. TRADITIONAL LSTM

weights. In essence, once an error signal arrives at a memory cell output, it gets scaled by the
output gate and the output nonlinearity h; then it enters the memory cell’s linear CEC, where
it can flow back indefinitely without ever being changed (this is why LSTM can bridge arbitrary
time lags between input events and target signals). Only when the error escapes from the
memory cell through an opening input gate and the additional input nonlinearity g, does it
get scaled once more and then serves to change incoming weights before being truncated. The
consequence of this truncation is that each LSTM block relies on errors from the output for its
adaptation. Since blocks do not exchange error signals, it is hard for LSTM to learn tasks where
one block exclusively serves other blocks (e.g., as a pointer into a FIFO queue) without directly
reducing the output error.

2.3 Tasks Solved with Traditional LSTM

Hochreiter and Schmidhuber (1997) already solved a wide range of tasks with traditional LSTM:
(1) The embedded Reber grammar (a popular regular grammar benchmark); (2) Noise free and
noisy sequences with time lags of up to 1000 steps (e.g.; the “2-sequence problem” proposed by
Bengio et al., 1994); (3) Continuous-valued tasks the require the storage of values for long time
periods and their summation and multiplication (up to a certain precision); (4) Temporal order
problems with wildly separated inputs.

In the following chapters, however, we will present tasks (partly derived form the tasks listed
above) on which traditional LSTM fails and point out its problems.

Chapter 3

Learning to Forget: Continual
Prediction with LSTM

3.1 Introduction

Hochreiter and Schmidhuber (1997) demonstrated that LSTM can solve numerous tasks not
solvable by previous learning algorithms for RNNs. In this chapter, however, we will show that
even LSTM fails to learn to correctly process certain very long or continual time series that are
not a priori segmented into appropriate training subsequences with clearly defined beginnings
and ends at which the network’s internal state could be reset. The problem is that a continual
input stream eventually may cause the internal values of the cells to grow without bound, even
if the repetitive nature of the problem suggests they should be reset occasionally. In this chapter
will present a remedy.

While we present a specific solution to the problem of forgetting in LSTM networks, we
recognize that any training procedure for RNNs which is powerful enough to span long time
lags must also address the issue of forgetting in short term memory (unit activations). We know
of no other current training method for RNNs which is sufficiently powerful to have encountered
this problem.

Outline. Section 3.1.1 explains LSTM’s weakness in processing continual input streams.
Section 3.2 introduces a remedy called “forget gates.” Forget gates learn to reset memory cell
contents once they are not needed any more. Forgetting may occur rhythmically or in an input-
dependent fashion. In the same section we derive a gradient-based learning algorithm for the
LSTM extension with forget gates. Section 3.3 describes experiments: we transform well-known
benchmark problems into more complex, continual tasks, report the performance of various RNN
algorithms, and analyze and compare the networks found by traditional LSTM and extended
LSTM.

3.1.1 Limits of traditional LSTM

LSTM allows information to be stored across arbitrary time lags, and error signals to be carried
far back in time. This potential strength, however, can contribute to a weakness in some

15

16 ~ CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

situations: the cell states s, often tend to grow linearly during the presentation of a time
series (the nonlinear aspects of sequence processing are left to the squashing functions and the
highly nonlinear gates). If we present a continuous input stream, the cell states may grow in
unbounded fashion, causing saturation of the output squashing function, A. This happens even
if the nature of the problem suggests that the cell states should be reset occasionally, e.g., at
the beginnings of new input sequences (whose starts, however, are not explicitly indicated by
a teacher). Saturation will (a) make h’s derivative vanish, thus blocking incoming errors, and
(b) make the cell output equal the output gate activation, that is, the entire memory cell will
degenerate into an ordinary BPTT unit, so that the cell will cease functioning as a memory.
The problem did not arise in the experiments reported by Hochreiter & Schmidhuber (1997)
because cell states were explicitly reset to zero before the start of each new sequence.

How can we solve this problem without losing LSTM’s advantages over time delay neural
networks (TDNN) (Waibel, 1989) or NARX networks (Lin et al., 1996), which depend on a
priori knowledge of typical time lag sizes?

The standard technique of weight decay, which helps to contain the level of overall activity
within the network, was found to generate solutions which were particularly prone to unbounded
state growth.

Variants of focused back-propagation (Mozer, 1989) also do not work well. These let the
internal state decay via a self-connection whose weight is smaller than 1. But there is no
principled way of designing appropriate decay constants: A potential gain for some tasks is paid
for by a loss of ability to deal with arbitrary, unknown causal delays between inputs and targets.
In fact, state decay does not significantly improve experimental performance (see “State Decay”
in Table 3.2).

Of course we might try to “teacher force” (Jordan, 1986; Doya & Yoshizawa, 1989) the
internal states s. by resetting them once a new training sequence starts. But this requires an
external teacher who knows how to segment the input stream into training subsequences. We
are precisely interested, however, in those situations where there is no a priori knowledge of this
kind.

3.2 Solution: Forget Gates

Our solution to the problem above is to use adaptive “forget gates” which learn to reset memory
blocks once their contents are out of date and hence useless. By resets we do not only mean
immediate resets to zero but also gradual resets corresponding to slowly fading cell states.

More specifically, we replace traditional LSTM’s constant CEC weight 1.0 by the multiplica-
tive forget gate activation y¥. See Figure 3.1.

3.2.1 Forward Pass of Extended LSTM with Forget Gates

All equations of traditional LSTM’s forward pass except for equation (2.6) will remain valid also
for extended LSTM with forget gates.

The forget gate activation y¥ is calculated like the activations of the other gates—see equa-
tions (2.1) and (2.2):

nety; (t) =Y weim Y™ (E=1) 5 y¥i(t) = fo; (nety, () (3.1)

Here net,, is the input from the network to the forget gate. We use the logistic sigmoid with
range [0,1] as squashing function f,,. Its output becomes the weight of the self recurrent

3.2. SOLUTION: FORGET GATES 17

N

out
h yout y /W\t/ net_,

ouput gate
output squashing h(Sc)

S=8Yy+¢g Y@ —@ =w, —net,
memorizing and forgetting

forget gate

. . in y
input gating g y @

input gate
input squashing g(net)
c

JEN

Figure 3.1: Memory block with only one cell for the extended LSTM. A multiplicative forget
gate can reset the cell’s inner state s..

output gating

connection of the internal state s. in equation (2.6). The revised update equation for s, in the
extended LSTM algorithm is (for ¢ > 0):

serlt) = yPi(8) ser(t=1) + 4™ (1) glnetes (1)) . (3:2)

with Scy (0) = 0. Extended LSTM’s full forward pass is obtained by adding equations (3.1) to
those in Chapter 2 and replacing equation (2.6) by (3.2).

Bias weights for LSTM gates are initialized with negative values for input and output gates
(see Section 3.3.2), positive values for forget gates. This implies—compare equations (3.1) and
(3.2)—that in the beginning of the training phase the forget gate activation will be almost 1.0,
and the entire cell will behave like a traditional LSTM cell. It will not explicitly forget anything
until it has learned to forget.

3.2.2 Backward Pass of Extended LSTM with Forget Gates

LSTM’s backward pass is an efficient fusion of slightly modified, truncated back propagation
through time (BPTT) (e.g Williams & Peng 1990) and a customized version of real time
recurrent learning (RTRL) (e.g. Robinson & Fallside 1987). Output units use BP; output
gates use slightly modified, truncated BPTT. Weights to cells, input gates and the novel forget
gates, however, use a truncated version of RTRL. Truncation means that all errors are cut off
once they leak out of a memory cell or gate, although they do serve to change the incoming

18 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

weights. The effect is that the CECs are the only part of the system through which errors can
flow back forever. This makes LSTM’s updates efficient without significantly affecting learning
power: error flow outside of cells tends to decay exponentially anyway (Hochreiter, 1991). In
the equations below, 2 will indicate where we use error truncation and, for simplicity, unless
otherwise indicated, we assume only a single cell per block.

We start with the usual squared error objective function based on targets t*:

B) = 5 S exlt)? 5 exlt) == 15(0) ~4H(0) (33)
k

where e;, denotes the externally injected error. We minimize F via gradient descent by adding
weight changes Awy,, to the weights wy, (from unit m to unit /) using learning rate o (d;; is
the Kronecker delta):

_ OE(t) OB(t) oyk(t) oYk (t)
Awlm(t) - 8'wlm - zk: 8yk(t) 8wlm - Zk:ek(t) 8wlm

) 04 (1) 0y'(1) Ometn()

- ¢ zk:%: e (?) oyl (t) Omety(t) Owyn

— dy* (t) ayl,(t) m Onety (t)

- zkal: (1) 397 (0) Fnety (0 (‘S”y (t_1)+8ym(t—1)>

Errors are truncated when they leave a memory block by setting the following derivatives in the

above equation to zero: gg;t(’g)) 20 for I' € {¢,in, i}

tr yE(t) Oy (t) .,
Awm(t) £ « Ekj (t) B0 Fmen VY

_ o MO (Z 8yk(t)ek(t)) Y (t=1) . (3.4)

For an arbitrary output unit (I =&') the sum in (3.4) reduces to e, (with k =k'). By differ-
entiating equation (2.9) we obtain the usual back-propagation weight changes for the output
units:

k
73?521:,&2) = fi(nety(t) = 0k(t) = fi(netr(t)) ex(t) - (3.5)

To compute the weight changes for the output gates Awgut,m we set (I = out) in (3.4). The
resulting terms can be determined by differentiating equations (2.1), (2.7) and (2.9):

out; k
B?L:lJetoutJ('?t) = fout; (n€tour; (1) &?2“75()15) ek (t) = hlse; (£)) weey oe(t) -

Inserting both terms in equation (3.4) gives dout; » the contribution of the block’s v-th cell to

dout;- As every cell in a memory block contributes to the weight change of the output gate, we

3.2. SOLUTION: FORGET GATES 19

have to sum over all cells v in block j to obtain the total doyut; of the j-th memory block (with
S; cells):

Sj
5outj (t) = féutj (netoutj (t)) Z h(sc}’ (t)) Z wlcc;? 6/6 (t) . (3'6)
v=1 k

Equations (3.4), (3.5)and (3.6) define the weight changes for output units and output gates of
memory blocks. Their derivation was almost standard BPTT, with error signals truncated once
they leave memory blocks (including its gates). This truncation does not affect LSTM’s long
time lag capabilities but is crucial for all equations of the backward pass and should be kept in
mind.

For weights to cell, input gate and forget gate we adopt an RTRL-oriented perspective, by
first stating the influence of a cell’s internal state scv on the error and then analyzing how each
weight to the cell or the block’s gates contributes to 8¢y So we split the gradient in a way

different from the one used in equation (3.4), neglecting, however, the same derivatives:

OE(t) 1 OE(t) Osc(t) 0scy(t)
A = — = — J = S v J . .
Wy (1) a Bun a Bser(t) Duim o es,, (t Jun (3.7)
N——
=i —es y (t)

J

Os.v
These terms are the internal state error e, . and a partial —l’ of 8y with respect to weights

wiy, feeding the cell ¢} (I = cj) or the block’s input gate (I = in) or the block’s forget gate
(I =), as all these weights contribute to the calculation of sc;;(). We treat the partial for the
internal states error e, , analogously to (3.4) and obtain:

J

Xl

() = — QB0 u _ OF() Oyf(t) dy(t) _ Oy 3 ay"(t)
7T Bse(t) Byk(t) oyl (t) Oscr(t) Oscy(t) 8y° (t)

J
:wc;?l Ok (t)

€s, €k (t)

Differentiating the forward pass equation (2.7), we obtain:
oySi B
dscr(t) *

Substituting this term in the equation for ey, :
J

es () = Y™ (1) W(sey(t)) (Zwkcy 5k(t)) : (3.8)
k

M (t) B (sey(t)

J

This internal state error needs to be calculated for each memory cell. To calculate the partial
Os v
u.— in equation (3.7) we differentiate equation (3.2) and obtain a sum of four terms.

0sev (t Ose (t—1 0 tev(t
sg) | Bsltml) L Gslrelg @)
Bwlm . 6wlm , o awlm
#0 for all‘lrE{(p,in,c}’} #£0 for l:c;? (cell)
Oy (t oy¥i (t
+ glnetes (1)) ("{)7]() + ose(t-1) 2 () (3.9)
< Wim 0wy, P

~ ~

#0 for I=in (input gate) #0 for I=¢p (forget gate)

20 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

Differentiating the forward pass equations (2.6), (2.2) and (3.1) for g, ¥™, and y® we can
substitute the unresolved partials and split the expression on the right hand side of (3.9) into

three separate equations for the cell (I = c), the input gate (I = in) and the forget gate (I = ¢):

8563,) (t) asc}) (t — 1)

et Owerm Y7 (1) + ' (nete (1) y™ (1) y™ (1) (3.10)
gl 2D y¥i (t) + g(neter(t) fin, (netin; () y™(t—1) (3.11)
OWin,m OWin;m ¢y () Jin; (N€lin : :
gl 2yt y?(t) + sep (t—1) i, (nety; () y™ (t-1) (3.12)
Owm Owg;m % p; \TCly; . i

Furthermore the initial state of network does not depend on the weights, so we have

88333 (t=0)

don 0 for 1€ {p,in,ci} . (3.13)

Note that the recursions in equations (3.10)-(3.12) depend on the actual activation of the block’s
forget gate. When the activation goes to zero not only the cell’s state, but also the partials are
reset (forgetting includes forgiving previous mistakes). Every cell needs to keep a copy of each
of these three partials and update them at every time step.

We can insert the partials in equation (3.7) and calculate the corresponding weight updates,
with the internal state error e; , (t) given by equation (3.8). The difference between updates of

J
weights to a cell itself (I = c;’) and updates of weights to the gates is that changes to weights to
the cell ch;;m only depend on the partials of this cell’s own state:

(3.14)

To update the weights of the input gate and of the forget gate, however, we have to sum over
the contributions of all cells in the block:

% Dsey (t) .
Awyy,(t) = E sy (t) P for 1 € {p,in} . (3.15)

The equations necessary to implement the backward pass are (3.4), (3.5), (3.6), (3.8), (3.10),
(3.11), (3.12), (3.13), (3.14) and (3.15).

3.2.3 Complexity

To calculate the computational complexity of extended LSTM we take into account that weights
to input gates and forget gates cause more expensive updates than others, because each such
weight directly affects all the cells in its memory block. We evaluate a rather typical topology
used in the experiments (see Figure 3.3). All memory blocks have the same size; gates have
no outgoing connections; output units and gates have a bias connection (from a unit whose
activation is always 1.0); other connections to output units stem from memory blocks only; the
hidden layer is fully connected. Let B, S, I, K denote the numbers of memory blocks, memory

3.3. EXPERIMENTS 21

cells in each block, input units, and output units, respectively. We find the update complexity
per time step to be:

to cells to input and forget gates to output gate
—— —— ——
W, = B-[S-(B-S+1+ 2-(B-S+1))+ B-S+1]

recurrent connections and bias

+ K-(B-S+1)+I-(B-(S+2-5+1))

to 0:1rtput from input
= OB*-S*)+0(K-B-S)+0(I-B-8S) , (3.16)

Keeping K and I fixed we obtain a total computational complexity of O(B?2 - S2). The number
of weights is:

to cells to gates
N, = B-[§-(B-S+1)+3-(B-S+1)]+K-(B-S+1)+I-(B-S+3-B));
recurrent conn:;tions and bias to o:;tput from‘irnput

with K and I fixed:
N, = O(B*.-5%) .

Hence LSTM’s computational complexity per time step and weight is O(1). Considering connec-
tions to gates separately we find that their computational complexity per time step and weight
is O(S). But this is compensated by the “less complex” connections to the cells of O(1). It is
essentially the same as for a fully connected BPTT recurrent network. Storage complexity per
weight is also O(1), as the last time step’s partials from equations (3.10), (3.11) and (3.12) are
all that need to be stored for the backward pass. So the storage complexity does not depend on
the length of the input sequence. Hence extended LSTM is local in space and time, according
to Schmidhuber’s definition (1989), just like traditional LSTM.

3.3 Experiments

3.3.1 Continual Embedded Reber Grammar Problem

To generate an infinite input stream we extend the well-known “embedded Reber grammar”
(ERG) benchmark problem, e.g., Smith and Zipser (1989), Cleeremans et al. (1989), Fahlman
(1991), Hochreiter & Schmidhuber (1997). Consider Figure 3.2.

ERG. The traditional method starts at the leftmost node of the ERG graph, and sequentially
generates finite symbol strings (beginning with the empty string) by steping from node to node
following the edges of the graph, and appending the symbols associated with the edges to the
current string until the rightmost node is reached. Edges are chosen randomly if there is a choice
(probability = 0.5).

Input and target symbols are represented by 7 dimensional binary vectors, each component
standing for one of the 7 possible symbols. Hence the network has 7 input units and 7 output
units. The task is to read strings, one symbol at a time, and to continually predict the next
possible symbol(s). Input vectors have exactly one nonzero component. Target vectors may have
two, because sometimes there is a choice of two possible symbols at the next step. A prediction
is considered correct if the error at each of the 7 output units is below 0.49 (error signals occur
at every time step).

22 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

S
Reber
T Grammar T
E B E_,
E P Reber P I:
' Grammar E

O

Figure 3.2: Transition diagrams for standard (left) and embedded (right) Reber grammars. The
dashed line indicates the continual variant.

Algo- | # hidden | #weights | learning % of success success
rithm units rate after
RTRL 3 ~ 170 0.05 “some fraction” | 173,000
RTRL 12 ~ 494 0.1 “some fraction” 25,000
ELM 15 ~ 435 0 >200,000
RCC 7-9 ~ 119-198 50 182,000
Tra.

LSTM | 3bl.,size 2 276 0.5 100 8,440

Table 3.1: Standard embedded Reber grammar (ERG): percentage of successful trials and num-
ber of sequence presentations until success for RTRL (results taken from Smith and Zipser 1989
), “Elman net trained by Elman’s procedure” (results taken from Cleeremans et al. 1989),
“Recurrent Cascade-Correlation” (results taken from Fahlman 1991) and traditional LSTM
(results taken from Hochreiter and Schmidhuber 1997). Weight numbers in the first 4 rows are
estimates.

To correctly predict the symbol before the last (T or P) in an ERG string, the network
has to remember the second symbol (also T or P) without confusing it with identical symbols
encountered later. The minimal time lag is 7 (at the limit of what standard recurrent networks
can manage); time lags have no upper bound though. The expected length of a string generated
by an ERG is 11.5 symbols. The length of the longest string in a set of N non-identical strings
is proportional to log N (statistics of the embedded Reber Grammar are discussed in Appendix
A). For the training and test sets used in our experiments, the expected value of the longest
string is greater than 50.

Table 3.1 summarizes performance of previous RNNs on the standard ERG problem (testing
involved a test set of 256 ERG test strings). Ounly traditional LSTM always learns to solve the
task. Even when we ignore the unsuccessful trials of the other approaches, LSTM learns much
faster.

CERG. Our more difficult continual variant of the ERG problem (CERG) does not provide
information about the beginnings and ends of symbol strings. Without intermediate resets, the
network is required to learn, in an on-line fashion, from input streams consisting of concatenated
ERG strings. Input streams are stopped as soon as the network makes an incorrect prediction or
the 10°-th successive symbol has occurred. Learning and testing alternate: after each training

3.3. EXPERIMENTS 23

P20 Y

COu Gate 1 v lrélglfyl\’]lgelrgcoliy COuGued
Cinme 1 CnGae

oloIoIoIoIoIo

Figure 3.3: Three layer LSTM topology with recurrence limited to the hidden layer consisting
of four extended LSTM memory blocks (only two shown) with two cells each. Only a limited
subset of connections are shown.

stream we freeze the weights and feed 10 test streams. Our performance measure is the average
test stream size; 100,000 corresponds to a so-called “perfect” solution (10° successive correct
predictions).

3.3.2 Network Topology and Parameters

The 7 input units are fully connected to a hidden layer consisting of 4 memory blocks with 2
cells each (8 cells and 12 gates in total). The cell outputs are fully connected to the cell inputs,
to all gates, and to the 7 output units. The output units have additional “shortcut” connections
from the input units (see Figure 3.3). All gates and output units are biased. Bias weights to in-
and output gates are initialized blockwise: —0.5 for the first block, —1.0 for the second, —1.5
for the third, and so forth. In this manner, cell states are initially close to zero, and, as training
progresses, the biases become progressively less negative, allowing the serial activation of cells
as active participants in the network computation. Forget gates are initialized with symmetric
positive values: +0.5 for the first block, +1 for the second block, etc. Precise bias initialization
is not critical though—other values work just as well. All other weights including the output
bias are initialized randomly in the range [—0.2,0.2]. There are 424 adjustable weights, which
is comparable to the number used by LSTM in solving the ERG (see Table 3.1).

Weight changes are made after each input symbol presentation. At the beginning of each
training stream, the learning rate « is initialized with 0.5. It either remains fixed or decays
by a factor of 0.99 per time step (LSTM with a-decay). Learning rate decay is well studied in
statistical approximation theory and is also common in neural networks, e.g. (Darken, 1995).

24 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

‘ Algorithm | %Solutions | %Good Sol. | %Rest |
Tra. LSTM with external reset | 74 (7441) 0 (—) 26 (31)
Traditional LSTM 0 () 1(1166) | 99 (37)
LSTM with State Decay (0.9) 0(-) 0(—) 100 (56)

LSTM with Forget Gates 18 (18889) | 29 (39171) | 53 (145)
LSTM with Forget Gates
and sequential a decay 62 (14087) | 6 (68464) 32 (30)

Table 3.2: Continuous Embedded Reber Grammar (CERG): Column “%Solutions”: Percentage
of “perfect” solutions (correct prediction of 10 streams of 100,000 symbols each), in parenthesis
the number of training streams presented until solution was reached. Column “Good Sol.”: Per-
centage of solutions with an average stream length > 1000 (mean length of error free prediction
is given in angle brackets). Column “Rest”: percentage of “bad” solutions with average stream
length < 1000 (mean length of error free prediction is given in angle brackets). The results are
averages over 100 independently trained networks. Other algorithms like BPTT are not included
in the comparison, because they tend to fail even on the easier, non-continual ERG.

We report results of exponential a-decay (as specified above), but also tested several other
variants (linear, 1/7°, 1/ \/T), and found them all to work as well without extensive optimization
of parameters.

3.3.3 CERG Results

Training was stopped after at most 30000 training streams, each of which was ended when the
first prediction error or the 100000th successive input symbol occurred. Table 3.2 compares
extended LSTM (with and without learning rate decay) to traditional LSTM and an LSTM
variant with decay of the internal cell state s. (with a self recurrent weight < 1). Our results
for traditional LSTM with network activation resets (by an external teacher) at sequence ends
are slightly better than those based on a different topology (Hochreiter & Schmidhuber, 1997).
External resets (non-continual case) allow LSTM to find excellent solutions in 74% of the trials,
according to our stringent testing criterion. Traditional LSTM fails, however, in the continual
case. Internal state decay does not help much either (we tried various self-recurrent weight
values and report only the best result). Extended LSTM with forget gates, however, can solve
the continual problem.

A continually decreasing learning rate led to even better results but had no effect on the
other algorithms. Different topologies may provide better results, too—we did not attempt to
optimize topology.

Can the network learn to recognize appropriate times for opening/closing its gates without
using the information conveyed by the marker symbols B and E? To test this we replaced all
T\P T\P T\P T\P

CERG subnets of the type L> o 2o B —\> by L> . L) .

This makes the task more difficult as the net now needs to keep track of sequences of numerous

potentially confusing T and P symbols. But LSTM with forget gates (same topology) was still

able to find perfect solutions, although less frequently (sequential o decay was not applied).

3.3. EXPERIMENTS 25

e 100 -9-1-10- -14- -10--10- -9-1-10-1-10-| -12--10- -9+~
e R e e st /
CD /
D g
O
c_U
E PCTRR
()
T T T P 130

Figure 3.4: Evolution of traditional LSTM’s internal states s. during presentation of a test
stream stopped at first prediction failure. Starts of new ERG strings are indicated by vertical
lines labeled by the symbols (P or T) to be stored until the next string start.

3.3.4 Analysis of the CERG Results

How does extended LSTM solve the task on which traditional LSTM fails? Section 3.1.1 already
mentioned LSTM’s problem of uncontrolled growth of the internal states. Figure 3.4 shows the
evolution of the internal states s, during the presentation of a test stream. The internal states
tend to grow linearly. At the starts of successive ERG strings, the network is in an increasingly
active state. At some point (here after 13 successive strings), the high level of state activation
leads to saturation of the cell outputs, and performance breaks down. Extended LSTM, however,
learns to use the forget gates for resetting its state when necessary. Figure 3.5 (top half) shows a
typical internal state evolution after learning. We see that the third memory block resets its cells
in synchrony with the starts of ERG strings (the vertical lines in Figure 3.5 indicate the third
symbol of a string). The internal states oscillate around zero; they never drift out of bounds
as with traditional LSTM (Figure 3.4). It also becomes clear how the relevant information gets
stored: the second cell of the third block stays negative while the symbol P has to be stored,
whereas a T is represented by a positive value. The third block’s forget gate activations are
plotted in Figure 3.5 (bottom). Most of the time they are equal to 1.0, thus letting the memory
cells retain their internal values. At the end of an ERG string the forget gate’s activation goes
to zero, thus resetting cell states to zero.

Analyzing the behavior of the other memory blocks, we find that only the third is directly
responsible for bridging ERG’s longest time lag (which is sufficient as one just bit has to be
stored). Figure 3.6 plots values analogous to those in Figure 3.5 for the first memory block and
its first cell. The first block’s cell and forget gate show short-term behavior only (necessary for
predicting the numerous short time lag events of the Reber grammar). The same is true for
all other blocks except the third. Common to all memory blocks is that they learned to reset
themselves in an appropriate fashion.

3.3.5 Continual Noisy Temporal Order Problem

Extended LSTM solves the CERG problem while traditional LSTM does not. But can traditional
LSTM solve problems which extended LSTM cannot? We tested extended LSTM on one of the

26 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

o q2- -20&2;-11- -15- 11410 -15-[-14--9- -19ﬁ 104-9- -9-

T 20

s A |

E 10 B |

£ 0 RS

£ ock, 1.Cell ‘

= -10 ock, 2.Cell ——
680 T P P T T T 850

>

g 1 1+ - " o - L

Q

(3]

3 0.5

©

9} O % ‘ ‘ ‘ ‘ ,< ‘ ‘ n ‘ ‘ ‘ i

(@]

L 680 T P P T T P P T T T T T 850

Symbol

Figure 3.5: Top: Internal states s. of the two cells of the self-resetting third memory block in
an extended LSTM network during a test stream presentation. The figure shows 170 successive
symbols taken from the longer sequence presented to a network that learned the CERG. Starts
of new ERG strings are indicated by vertical lines labeled by the symbols (P or T) to be stored
until the next string start. Bottom: simultaneous forget gate activations of the same memory
block.

most difficult nonlinear long time lag tasks ever solved by an RNN: “Noisy Temporal Order”
(NTO) (task 6b taken from Hochreiter & Schmidhuber 1997).

NTO. The goal is to classify sequences of locally represented symbols. Each sequence starts
with an E, ends with a B (the “trigger symbol”), and otherwise consists of randomly chosen
symbols from the set {a,b,c,d} except for three elements at positions t1,to and t3 that are
either X or Y (Figure 3.7). The sequence length is randomly chosen between 100 and 110, #;
is randomly chosen between 10 and 20, %o is randomly chosen between 33 and 43, and 3 is
randomly chosen between 66 and 76. There are 8 sequence classes @, R, S,U,V, A, B,C which
depend on the temporal order of the Xs and Ys. The rules are (temporal order — class):
XX, X -Q;, X,X,Y - R XYV,X -5 XYY->U;, VX,X->V, VXY —
A; VY. X - B; Y, Y)Y — C. Target signals occur only at the end of a sequence. The
problem’s minimal time lag size is 80 (!). Forgetting is only harmful as all relevant information
has to be kept until the end of a sequence, after which the network is reset anyway.

We use the network topology described in section 3.3.2 with 8 input and 8 output units.
Using a large bias (5.0) for the forget gates, extended LSTM solved the task as quickly as
traditional LSTM (recall that a high forget gate bias makes extended LSTM degenerate into
traditional LSTM). Using a moderate bias like the one used for CERG (1.0), extended LSTM

3.3. EXPERIMENTS 27

4

2 ﬁ 17 15-F11210- -15- | -14--9- -19- 110:-9- -0
o 10
o
(0p}
AT AR A Y
5 0y %xsz IRy &jﬁl N ﬁ- i
= 1.Block, 1.Cell ——

10 L

680 T P P TTPPTT TTT850
>
g 1
Q
8 0.5 |
©
(@]
L 680 T P P T T P P TT T T T 850

Symbol

Figure 3.6: Top: Extended LSTM’s self-resetting states for the first cell in the first block.
Bottom: forget gate activations of the first memory block.

0 10-20 33-43 66 - 76 100-110
noise noise X noise noise

Booooo { }—»looo..‘- }-»oo... }-»oo.oo E

& b,c.d Y ab,c,d Y ab,c,d ab,c,d ‘

,,

recurrent connection for continual version

Figure 3.7: NTO and CNTO tasks. See text for details.

took about three times longer on average, but did solve the problem. The slower learning speed
results from the net having to learn to remember everything and not to forget.

Generally speaking, we have not yet encountered a problem that LSTM solves while extended
LSTM does not.

CNTO. Now we take the next obvious step and transform the NTO into a continual prob-
lem that does require forgetting, just as in section 3.3.1, by generating continual input streams
consisting of concatenated NTO sequences (Figure 3.7). Processing such streams without inter-
mediate resets, the network is required to learn to classify NTO sequences in an online fashion.
Each input stream is stopped once the network makes an incorrect classification or 100 successive
NTO sequences have been classified correctly. Learning and testing alternate; the performance
measure is the average size of 10 test streams, measured by the number of their NTO sequences
(each containing between 100 and 110 input symbols). Training is stopped after at most 10°

28 CHAPTER 3. LEARNING TO FORGET: CONTINUAL PREDICTION WITH LSTM

\ Algorithm | %Perfect Sol. | %Partial Sol. |
Traditional LSTM 0() 100 (4.6)
LSTM with Forget Gates | 24 (18077) 76 (12.2)

LSTM with Forget Gates
and sequential o decay 37 (22654) 63 (11.8)

Table 3.3: Continuous Noisy Temporal Order (CNTO): Column “%Perfect Sol.”: Percentage of
“perfect” solutions (correct classification of 1000 successive NTO sequences in 10 test streams);
in parentheses: number of training streams presented. Column “%Partial Sol.”: percentage of
solutions and average stream size (value in angular brackets) < 100. All results are averages over
100 independently trained networks. Other algorithms (BPTT, RTRL etc.) are not included in
the comparison, because they fail even on the easier, non-continual NTO.

training streams.

Results. Table 3.3 summarizes the results. We observe that traditional LSTM again fails
to solve the continual problem. Extended LSTM with forget gates, however, can solve it. A
continually decreasing learning rate (a decaying by a fraction of 0.9 after each NTO sequence
in a stream) leads to slightly better results but is not necessary.

3.4 Conclusion

Continual input streams generally require occasional resets of the stream-processing network.
Partial resets are also desirable for tasks with hierarchical decomposition. For instance, re-
occurring subtasks should be solved by the same network module, which should be reset once
the subtask is solved. Since typical real-world input streams are not a priori decomposed
into training subsequences, and since typical sequential tasks are not a priori decomposed into
appropriate subproblems, RNNs should be able to learn to achieve appropriate decompositions.
The novel forget gates naturally permit LSTM to learn local self-resets of memory contents that
have become irrelevant.

LSTM extended with forget gates holds promise for any sequential processing task in which
we suspect that a hierarchical decomposition may exist, but do not know in advance what
this decomposition is. The model has been successfully applied to the task of discriminating
languages from very limited prosodic information (Cummins, Gers, & Schmidhuber, 1999) where
there is no clear linguistic theory of hierarchical structure.

Chapter 4

Arithmetic Operations on Continual
Input Streams

4.1 Introduction

Many typical real world sequence processing tasks involve continual input streams, distributed
input representations, continuous-valued targets and inputs and internal states, and long time
lags between relevant events. So we designed several artificial nonlinear tasks that combine these
factors.

Due to its architecture traditional LSTM is well suited for tasks involving addition, subtrac-
tion and integration (Hochreiter & Schmidhuber, 1997). Such operations are essential for many
real-world tasks. But another essential arithmetic operation, namely multiplication, does pose
problems. Forget gates, however, originally introduced to release irrelevant memory contents,
greatly improve LSTM’s performance on tasks involving multiplication, as will be seen below.

4.2 Experiments

We focus on tasks involving arithmetic operations on input streams that so far have been ad-
dressed only in non-continual settings (Tsung & Cottrell, 1989; Hochreiter & Schmidhuber,
1997).

General set-up. We feed the net continual streams of 4-dimensional input vectors generated
in an online fashion. We define ¢y = 0 (stream start) and ¢, = ¢, 1+T+(—-1)"-V forn =1,2,...,

where V € {0,1,..., %} is chosen randomly, and integer 7' is the minimal time lag. The first
component of each input vector is a random number from the interval [—1,+1]. The second
and third serve as “markers”: they are always 0.0 except at times to,,—1 for m = 1,2,..., when

either the second component is 1.0 with probability p, or the third is 1.0 with probability 1—p.
The fourth component is always 0 except at times to,,, when targets are given and its activation
is 1.0. The target at tg is 0. If the 2nd component was active at to,,,_1 then the target at to,
is the sum of the previous target at fo,,_2 and the “marked” first input component at t9,,_1.
Otherwise it is the product of these two values.

29

30 CHAPTER 4. ARITHMETIC OPERATIONS ON CONTINUAL INPUT STREAMS

=[T-T/5, T] [T, T+T/5] [T-T/5, T] [T, T+T/5] -

2000000000000000[1]J0OO0O0O00D00000000000O0[1]0 ..

+000000[1]00000000000000000000000000O0O0].

%0 0000000000000000000000[1]J00000000000 -
+

random value marker

2 . 3
| time ‘ ‘

Figure 4.1: Tllustration of the continual addition (and multiplication) tasks.

Hence non-initial targets depend on events that happened at least 271" steps ago. Note that
occurrences of “value markers” and targets oscillate. See Figure 4.1 for an illustration of the
task.

All streams are stopped once the absolute output error exceeds 0.04. Test streams are almost
unlimited (max. length = 1000 target occurrences), but training streams end after at most 10
target occurrences. Learning and testing alternate: after each training stream we freeze the
weights and feed 100 test streams. Qur performance measure is the average test stream size.
Task 1: Continual addition. p = 1.0 (no multiplication). 7" = 20. Task 1 essentially requires
to keep adding (possibly negative) values to the already existing internal state.

Task 2: Continual addition and multiplication. p = 0.5, 7" = 20. If the 3rd input
component is active at to,, 1 and the 1st is negative then the latter will get replaced by its
absolute value.

Task 3: Gliding addition. Like Task 1, but targets at times to,,+2 equal the sum of the two
most recent marked values at times top, 41 and to,,—1 (the first target at to equals the first value
at t1). T = 10. Task 3 is harder than task 1 because it requires selective partial resets of the
current internal state.

4.2.1 Network Topology and Parameters

The 4 input units are fully connected to a hidden layer consisting of 3 memory blocks with 1 cell
each (roughly: less blocks decreased performance for LSTM and more blocks did not improve
performance significantly). The cell outputs are fully connected to the cell inputs, to all gates,
and to the output unit. All gates and output units are biased. Bias weights to in- and output
gates are initialized block-wise: —1.0 for the first block, —2.0 for the second, and so forth. (This
is a standard initialization procedure: blocks with higher bias tend to get released later during
the learning phase.) Forget gates are initialized with symmetric positive values: +1.0 for the
first block, +2.0 for the second, and so forth. The squashing functions g,h and f}, are the identity
function.

4.2.2 Results

See Table 4.1. Test stream sizes are measured by number of target presentations before first
failure. A stream size below 3 counts as an unsuccessful trial. We report the best test perfor-
mance during a training phase involving 3 - 10° training streams, averaged over 10 independent

4.3. CONCLUSION 31

‘ Algorithm ‘ Task 1 ‘ Task 2 ‘ Task 3 ‘

Traditional LSTM | 73 (100%) | - (0%) | - (0%)
LSTM + Forget Gates | 42 (100%) | 40 (60%) | 241 (50%)

Table 4.1: Average test stream size (percentage of successful trials given in parenthesis). In
Task 3 one network with forget gates exceeded the limit of 1000 target occurrences.

networks.

Task 1. Both traditional LSTM and LSTM with forget gates learn the task. Worse perfor-
mance of LSTM with forget gates is caused by slower convergence, because the net has to learn
to remember everything and not to forget.

Task 2. LSTM with forget gates solves the problem even when addition and multiplication are
combined, whereas traditional LSTM’s solutions are not sufficiently accurate. This shows that
forget gates add algorithmic functionality to memory blocks besides releasing resources during
runtime (their original purpose which is not essential here).

Task 3. Traditional LSTM cannot solve the problem at all, whereas LSTM with forget gates
does find good and even “perfect” solutions. Why? The forget gates learn to prevent LSTM’s
uncontrolled internal state growth (see Section 3.3.4), by resetting states once stored information
becomes obsolete.

The results confirm that forget gates are mandatory for LSTM fed with continual input
streams (Chapter 3)., where obsolete memories need to be discarded at some point (see “Task
3: Gliding addition”). Experiment 2 shows that forget gates also greatly facilitate operations
involving multiplication.

4.3 Conclusion

In this chapter we demonstrated that forget gates do not only serve for the processing of continual
input streams but also augment LSTM’s arithmetic capabilities.

We presented tasks on continual input streams with a level of arithmetic complexity where
traditional LSTM fails but LSTM with forget gates solves the tasks in an elegant way. On the
other hand we have not found a task yet that traditional LSTM can solve but LSTM with forget
gates cannot.

32 CHAPTER 4. ARITHMETIC OPERATIONS ON CONTINUAL INPUT STREAMS

Chapter 5

Learning Precise Timing with
Peephole LSTM

5.1 Introduction

Humans quickly learn to recognize rhythmic pattern sequences, whose defining aspects are the
temporal intervals between sub-patterns. Conversely, drummers and others are also able to
generate precisely timed rhythmic sequences of motor commands. This motivates the study of
artificial systems that learn to separate or generate patterns that convey information through
the length of intervals between events.

Widely used approaches to sequence processing, such as Hidden Markov Models (HMMs),
typically discard such information. They are successful in speech recognition precisely because
they do not care for the difference between slow and fast versions of a given spoken word. Other
tasks such as rhythm detection, music processing, and the tasks in this chapter, however, do
require exact time measurements. Although an HMM could deal with a finite set of intervals
between given events by devoting a separate internal state for each interval, this would be
cumbersome and inefficient, and would not use the very strength of HMMs to be invariant to
non-linear temporal stretching.

RNNs hold more promise for recognizing patterns that are defined by temporal distance. In
fact, while HMMs and traditional discrete symbolic grammar learning devices are limited to dis-
crete state spaces, RNNs are in principle suited for all sequence learning tasks because they have
Turing capabilities (Siegelmann & Sontag, 1991). Typical RNN learning algorithms (Pearlmut-
ter, 1995) perform gradient descent in a very general space of potentially noise-resistant algo-
rithms using distributed, continuous-valued internal states to map real-valued input sequences to
real-valued output sequences. Hybrid HMM-RNN approaches (Bengio & Frasconi, 1995) might
be able to combine the virtues of both methodologies, but to our knowledge have never been
applied to the problem of precise event timing as discussed here.

Previous tasks already required the LSTM network to act upon events that occurred 50
discrete time steps ago, independently of what happened over the intervening 49 steps (see
Chapter 3 and Hochreiter & Schmidhuber, 1997). Right before the critical moment, however,

33

34 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

e tOHt

out
output gating S }70Ut % y @<ﬂ
c]

output gate

peephole connection At
)

peephole connections

y memorizing
net % CEC ' cell
and forgetting ¢ state

forget gate . in
input gating g ym % y /Ilet
\
input squashing g input gate
cell input / W\
net.

Figure 5.1: LSTM memory block with one cell; peephole connections connect s, to the gates.

there was a helpful “marker” input informing the network that its next action would be crucial.
Thus the network did not really have to learn to measure a time interval of 50 steps; it just had
to learn to store relevant information for 50 steps, and use it once the marker was observed —
something that is impossible for traditional RNNs but comparatively easy for LSTM.

But what if there are no such markers at all? What if the network itself has to learn to
measure and internally represent the duration of task-specific intervals, or to generate sequences
of patterns separated by exact intervals? Here we will study to what extent this is possible. The
highly nonlinear tasks in the present chapter do not involve any time marker inputs; instead
they require the network to time precisely and robustly across long time lags in continual input
streams.

Before we describe our new timing experiments we will first identify a weakness in LSTM’s
connection scheme, and introduces peephole connections as a remedy (Section 5.2). Sections 5.3
and 5.4 describe the modified forward and backward pass for “peephole LSTM.”

5.2 Extending LSTM with “Peephole Connections”

We are building on LSTM with forget gates (Chapter 3), simply called “LSTM” in what follows.

A limitation of LSTM. Each gate receives connections from the input units and the
outputs of all cells. But there is no direct connection from the CEC it is supposed to control.
All it can observe directly is the cell output, which is close to zero as long as the output gate
is closed. The resulting lack of essential information may harm network performance, especially
in case of the tasks we are going to study here.

Peephole connections. Our simple but very effective remedy is to add weighted “peephole”
connections from the CEC to the gates of the same memory block (Figure 5.1). The gates learn
to shield the CEC from unwanted inputs (forward pass) or unwanted error signals (backward
pass). To keep the shield intact, during learning no error signals are propagated back from gates
via peephole connections to the CEC (see backward pass, Section 5.4). Peephole connections
are treated like regular connections to gates (e.g., from the input) except for update timing. For

5.3. FORWARD PASS 35

conventional LSTM the only source of recurrent connections is the cell output y¢, so the order
of updates within a layer is arbitrary. Peephole connections from within the cell, or recurrent
connections from gates, however, require a refinement of LSTM’s update scheme.

Updates for peephole LSTM. Each memory cell component should be updated based
on the most recent activations or states of connected sources. In the simplest case this requires
a two-phase update scheme; when recurrent connections from gates are present, the first phase
must be further subdivided into three steps (a,b,c):

1. (a) Input gate activation y*,
(b) forget gate activation y®,

(c) cell input and cell state s,

2. output gate activation y°“* and cell output y°.

Thus the output gate is updated after cell state s., seeing via its peephole connection the current
value of s.(t) (already affected by forget gate and recent input), and possibly the current input
and forget gate activations.

5.3 Forward Pass

Before specifying the equations for the LSTM model with peephole connections, we introduce
a minor simplification unrelated to the central idea of this chapter. So far LSTM memory cells
incorporated an input squashing function g and an output squashing function (called h in earlier
LSTM publications). We remove the latter for lack of empirical evidence that it is really needed
(in fact, the very first LSTM publication (Hochreiter & Schmidhuber, 1997) already omitted the
output squashing function for some experiments).

Step 1a,1b. The input gate activation ™ and the forget gate activation y¥ are computed

as:
Sj
netmj t = Zwinjm y"(t-1) + Zwinjc}? Sc? (t=1), y"™i(t) = f’inj (netinj ®), (5.1)
m v=1
Sj
nety,(t) = D wem y"(E=1) + Y weer ser(t=1) , y¥i(t) = fy;(nety, (1)) . (5.2)
m v=1

The peephole connections for the input gate and the forget gate are incorporated in equation 5.1
and 5.2 by including the CECs (containing the cell states) of memory block j as source units.

Step lc. At t = 0, the state s.(¢) of memory cell ¢ is initialized to zero; subsequently
(t > 0) it is calculated by adding the squashed, gated input to the state at the previous time
step, s.(t—1), which is multiplied (gated) by the forget gate activation y%i(t):

— v M (F—
netc}’ (t) = chjm y™(t-1),
m
s(t) = Y9I s (t=1) + 4 (1) glnetes (1)) - (5.3)
Step 2. The output gate activation y°* is computed as:
Sj
netoutj (t) = Zwoutjm ym(t_l) + Zwoutjc}? Sc}’ (t) ’
m v=1

yomj(t) = foutj(”etoutj(t)) . (5.4)

36 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

Equation 5.4 includes the peephole connections for the output gate from the CECs of memory
block j with the cell states s.(t), as updated in step lc. The cell output y¢ is computed as:

Y (t) = y* (1) se(t) - (5.5)

The equations for the output units & remain as specified in equations 2.9.

5.4 Gradient-Based Backward Pass

The revised update scheme for memory blocks allows for treating peephole connections like reg-
ular connections (see Sections 5.2 and 5.3), and so requires only minor changes to the backward
pass (Chapter 3). We will present it below but not fully re-derive it. We will, however, point
out the differences to the previous equations in Section 3.2.2. Appendix B gives pseudo-code for
the entire algorithm.

In what follows we will present equations for LSTM with forget gates and peephole connec-
tions, but without output squashing. The sign " will indicate where we use error truncation.

During each step in the forward pass, no matter whether a target is given or not, we need
to update the partial derivatives s /0wy, and Osey / awlc},: for weights to the cell (I = c}), to

the input gate (I = in), and to the forget gate (I = ¢):
880; (t) . asc}) (t—1)

r
awc;?m a'wc}’m

y¥i(t) + g (metey (1) 4™ () y™ (1) (5.6)

880}1 (t) tr Bscy (t—1)

i v / . m_1) .
ot & gn = VP gty (0) Fo (netn, () 7D s (5T)
880}) (t) . 580; (t—1) o ,
B = gu o V(@) +g(netey (1) fin;(netin; (2)) s (E-1) (5.7b)
injcj injc} ’
OSC}J (t) 4 880}) (t—1) o; , m
it PO 1)+ sgt-1) £ et () 97 (1) (580
pjm pjm
Osew(t) 4. Ose(t—1) ,
Bw] - = 8111 ; Yo (t) + ser(t—1) fy,; (nety, () S (t—-1), (5.8b)
wjc} wic}

with 9scv (0)/ 0wy = 0scv(0)/0w,,» =0 for 1 € {in,p,cj}. Equation 5.7b and 5.8b are for
the peephole connection weights. ’

Following previous notation, we minimize the objective function E by gradient descent (sub-
ject to error truncation), changing the weights w;,, (from unit m to unit /) by an amount Awy,
given by the learning rate « times the negative gradient of E. For the output units we obtain
the standard back-propagation weight changes:

Awpn(t) = o 6(t) y™(t—1) , 6(t) = OE(t)

= et (D) (5.9)

Here we use the customary squared error objective function based on targets t*, yielding:

3k (t) = fr(nety(t)) ex(t) , (5.10)

5.5. EXPERIMENTS 37

where ey (t) := t¥(t) — y*(t) is the externally injected error. The weight changes for connections
to the output gate (of the j-th memory block) from the source units (as specified by the network
topology) woyut ,m and for the peephole connections woyt; ¢y are:

Awoyt;m(t) = @ dou; (t) y™ (1), Awoutjc; (t) = @ dout; () Sc? (t), (5.11a)
Sj
6outj (t) z féutj (netoutj (t)) Z Sc;? (t) Z wkc}’ Ok (t) : (5'11b)
v=1 k

Output squashing (removed here) would require the incorporation of the derivative of the output
squashing function in (5.11b). To calculate weight changes Aw,, and Aw, s (peephole connec-

tion weights) for connections to the cell (I = cf), the input gate (I = in), and the forget gate
(I = ¢) we use the partials from Equations 5.6, 5.7b, and 5.8b:

830; (t)
Awem(t) = «a Cs.y t T (5.12)
ij
5 Bsco (t) 5 Dseo (t)
Avimgm(t) = @) eyl 5, "y D@ =a 3 eg® Z, 0 (31)
v=1 " v=1 injcy
5 Dsev (1) 5 Dsev (t)
Awy,.m(t) = « es, (1) I Aw () =a es,y (t) : (5.14)
pjm 1;2::1 Sej Wy m ;¢ ~ 5 aw%c;,

where the internal state error e, is separately calculated for each memory cell:
J

esc;! (t) t:T youtj (t) (Z wkc}-’ 6k(t)> . (515)
k

Like traditional LSTM LSTM with forget gates and peephole connections is still local in
space and time. The increase in complexity due to peephole connections is small: 3 weights per
cell.

5.5 Experiments

We study LSTM'’s performance on three tasks that require the precise measurement or generation
of delays. We compare conventional to peephole LSTM, analyze the solutions, or explain why
none was found.

Measuring spike delays (MSD). See Section 5.5.2. The goal is to classify input sequences
consisting of sharp spikes. The class depends on the interval between spikes. We consider two
versions of the task: continual (MSD) and non-continual (NMSD). NMSD sequences stop after
the second spike, whereas MSD sequences are continual spike trains. Both NMSD and MSD
require the network to measure intervals between spikes; MSD also requires the production of
stable results in presence of continually streaming inputs, without any external reset of the
network’s state. Can LSTM learn the difference between almost identical pattern sequences
that differ only by a small lengthening of the interval (e.g., from n to n+1 steps) between input
spikes? How does the difficulty of this problem depend on n?

38 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

Generating timed spikes (GTS). See Section 5.5.3. The GTS task can be obtained from
the MSD task by exchanging inputs and targets. It requires the production of continual spike
trains, where the interval between spikes must reflect the magnitude of an input signal that may
change after every spike.

GTS is a special case of periodic function generation (PFG, see below). In contrast to
previously studied PFG tasks (Williams & Zipser, 1989; Doya & Yoshizawa, 1989; Tsung &
Cottrell, 1995), GTS is highly nonlinear and involves long time lags between significant output
changes, which cannot be learned by conventional RNNs. Previous work also did not focus on
stability issues. Here, by contrast, we demand that the generation be stable for 1000 successive
spikes. We systematically investigate the effect of minimal time lag on task difficulty.

Additional periodic function generation tasks (PFG). See Section 5.5.4. We study
the problem of generating periodic functions other than the spike trains above. The classic
examples are smoothly oscillating outputs such as sine waves, which are learnable by fully
connected teacher-forced RNNs whose units are all output units with teacher-defined activations
(Williams & Zipser, 1989). An alternative approach trains an RNN to predict the next input;
after training outputs are fed back directly to the input so as to generate the waveform (Doya
& Yoshizawa, 1989; Tsung & Cottrell, 1995; Weiss, 1999; Townley et al., 1999).

Here we focus on more difficult, highly nonlinear, triangular and rectangular waveforms, the
latter featuring long time lags between significant output changes. Again, traditional RNNs
cannot learn tasks involving long time lags (Hochreiter, 1991; Bengio et al., 1994), and previous
work did not focus on stability issues. By contrast, we demand that the generation be stable
for 1000 successive periods of the waveform.

5.5.1 Network Topology and Experimental Parameters

We found that comparatively small LSTM nets can already solve the tasks above. A single input
unit (used only for tasks where there is input) is fully connected to the hidden layer consisting
of a single memory block with one cell. The cell output is connected to the cell input, to all
three gates, and to a single output unit (Figure 5.2). All gates, the cell itself, and the output
unit are connected to a bias unit (a unit with constant activation one) as well. The bias weights
to input gate, forget gate, and output gate are initialized to 0.0, —2.0 and +2.0, respectively.
(Although not critical, these values have been found empirically to work well; we use them for
all our experiments.) All other weights are initialized to uniform random values in the range
[—0.1,0.1]. In addition to the three peephole connections there are 14 adjustable weights: 9
“unit-to-unit” connections and 5 bias connections. The cell’s input squashing function g is the
identity function. The squashing function of the output unit is a logistic sigmoid with range
[0,1] for MSD and GTS (except where explicitly stated otherwise), and the identity function for
PFG. (A sigmoid function would work as well, but we focus on the simplest system that can
solve the task.)

Our networks process continual streams of inputs and targets; only at the beginning of a
stream are they reset. They must learn to always predict the target ¢x(t), producing a stream of
output values (predictions) y(t). A prediction is considered correct if the absolute output error
lex(t)] = [tF(t) — y*(t)| is below 0.49 for binary targets (MSD, NMSD and GTS tasks), below
0.3 otherwise (PFG tasks). Streams are stopped as soon as the network makes an incorrect
prediction, or after a given maximal number of successive periods (spikes): 100 during training,
1000 during testing.

Learning and testing alternate: after each training stream, we freeze the weights and generate

5.5. EXPERIMENTS 39

Memory Output Gate
Block
with Forget Gate ‘
one
Cell ’

Figure 5.2: Three-layer LSTM topology with one input and one output unit. Recurrence is
limited to the hidden layer, which consists of a single LSTM memory block with a single cell.
All 9 “unit-to-unit” connections are shown, but bias and peephole connections are not.

a test stream. Our performance measure is the achieved test stream size: 1000 successive periods
are deemed a “perfect” solution. Training is stopped once a task is learned or after a maximal
number of 107 training streams (10® for the MSD and NMSD tasks). Weight changes are made
after each target presentation. The learning rate « is set to 107°; we use the momentum
algorithm (Plaut, Nowlan, & Hinton, 1986) with momentum parameter 0.999 for the GTS task,
0.99 for the PFG and NMSD task, and 0.9999 for the MSD task. We roughly optimized the
momentum parameter by trying out different orders of magnitude.

For tasks GTS and MSD, the stochastic input streams are generated online. A perfect solu-
tion correctly processes 10 test streams, to make sure the network provides stable performance
independent of the stream beginning, which we found to be critical. All results are averages
over 10 independently trained networks.

5.5.2 Measuring Spike Delays (MSD)

The network input is a spike train, represented by a series of ones and zeros, where each “one”
indicates a spike. Spikes occur at times T'(n) set F' + I(n) steps apart, where F' is the minimum
interval between spikes, and I(n) is an integer offset, randomly reset for each spike:

T(0) = F+1(0) , T(n) = T(n—1) + F + I(n) (n € N) .

The target given at times ¢t = T'(n) is the delay I(n). (Learning to measure the total interval
F + I(n) — that is, adding the constant F' to the output — is no harder.) A perfect solution
correctly processes all possible input test streams. For the non-continual version of the task
(NMSD) a stream consists of a single period (spike).

MSD Results. Table 5.1 reports results for NMSD with I(n) € {0,1} for various minimum
spike intervals F'. The results suggest that the difficulty of the task (measured as the average
number of training streams necessary to solve it) increases drastically with F' (see Figure 5.3).
A qualitative explanation is that longer intervals necessitate finer tuning of the weights, which

40 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

LSTM Peephole LSTM
T | F | In) € 7 8ol [Train. 10°] | % Sol. | Train. [10%]
10| {0,1} | 100 160 + 14 100 125 + 14
20 | {0,1} | 100 732+ 97 100 763 £ 103
NMSD [30 | {0,1} | 100 | 17521 & 2200 80 | 12885 & 2091
10 | {0,1} 20 | 37533 & 4558 70 | 25686 £ 2754
50 | {0,1} 0 - 10 32485
10 | {0,1} 10 8350 20 | 27453 £ 11750
MSD g5770,1,27 || 20 | 29257 £ 13758 60 | 9791 2660

Table 5.1: Results comparing conventional and peephole LSTM on the NMSD and MSD tasks.
Columns show the task T, the minimum spike interval F', the set of delays I(n), the percentage
of perfect solutions found, and the mean and standard derivation of the number of training
streams required.

40 LSM~ |]

e Peephole LSTM ¢

£ 30 |]

(4]

o

& 20 1 1

=

E 10 L 4

o

= 0 : : :
0O 10 20 30 40 50

Time Delay F

Figure 5.3: Average number of training streams required for the NMSD task with I(n) € {0,1},
plotted against the minimum spike interval F'.

requires more training. Peephole LSTM outperforms LSTM. The continual MSD task for =10
with I(n) € {0,1} or I(n) € {0,1,2}, is solved with or without peephole connections (Table
5.1).

In the next experiment we evaluate the influence of the range of I(n), using the identity
function instead of the logistic sigmoid as output squashing function. We let I(n) range over
{0,i} or {0,..,4} for all s € {1,..,10}. Results are reported in Table 5.2 for NMSD with F'=10.
The training duration depends on the size of the set from which I(n) is drawn, and on the
maximum distance (MD) between elements in the set. A larger MD leads to a better separation
of patterns, thus facilitating recognition. To confirm this, we ran the NMSD task with F'=10
and I(n) € {0,7} with 7 € {2,..,10} (size 2, MD i), as shown in the bottom half of Table 5.2.
As expected, training time decreases with increasing MD. A larger set of possible delays should
make the task harder. Surprisingly, for I(n) € {0,..,i} (size i+1, MD %) with ¢ ranging from
1 to 5 the task appears to become easier (due to the simultaneous increase of MD) before the

5.5. EXPERIMENTS 41

LSTM Peephole LSTM
I(n) € % | Training % | Training
Sol. | Str. [103] || Sol. | Str. [10%]
{0,1} 100 48 £ 12 100 46 +£ 14
[0,1,2} || 100 | 25+4 | 100 | 10.3 £3.3
0,3} | 100 | 123£24 || 100 | 7.4+22
10,,4) || 100 | 85£1.3 || 100 | 3.6 £04
{0,.,5} | 100 | 45+04 | 100 | 6014
{0,.,6) | 100 6110 | 100| 7.1+28
{0,..,7} 100 | 8.56%+29 70 15+£6.5
{0,.,8) || 100 | 141+42 || 50| 22+9
0,.,9Y | 90| 30+28 | 50| 33x17
{0,..,10} 60 235 20 | 395 £ 167
{0,2} 100 338 100 18£5
{0,3} 100 | 12.5 +4.2 100 23+6
{0,4} 100 | 12.1 £ 2.8 100 | 13.7 £ 2.7
{0,5] | 100 | 85+2.3 | 100 | 10.4 £ 2.0
0,61 |[100 | 7.7£1.5 | 100 | 12.7 3.1
0,7} | 100 | 77£1.5 || 100 | 14.5 £ 6.0
(0,8) |[100| 7520 | 100 6313
0,97 |[100| 5.8£1.6 | 100 7516
0,10} || 100 | 5.6£0.9 | 100| 6717

Table 5.2: The percentage of perfect solutions found, and the mean and standard derivation of
the number of training streams required, for conventional versus peephole LSTM on the NMSD
task with F'=10 and various choices for the set of delays I(n).

difficulty increases rapidly for larger <. Thus the task’s difficulty does not grow linearly with
the number of possible delays, corresponding to values (states) inside a cell the network must
learn to distinguish. Instead we observe that LSTM fares best at distinguishing 6 or 7 different
delays. One is tempted to draw a connection to the “magic number” of 7 4+ 2 items that an
average human can store in Short Term Memory (STM) (Miller, 1956), but such a link seems
rather far-fetched to us.

We also observe that the results for I(n) € {0,1} are better than those obtained with a
sigmoid function (compare Table 5.1). Fluctuations in the stochastic input can cause temporary

saturation of sigmoid units; the resulting tiny derivatives for the backward pass will slow down
learning (LeCun, Bottou, Orr, & Miiller, 1998).

MSD Analysis. LSTM learned to measure time in two principled ways. The first is to
slightly increase the cell contents s. at each time step, so that the elapsed time can be read off
the value of s.. This kind of solution is shown on the left-hand side of Figure 5.4. (The state
reset performed by the forget gate is essential only for continual online prediction over many
periods.) The second way is to establish internal oscillators and derive the elapsed time from
their phases (right-hand side of Figure 5.4). Both kinds of solutions can be learned with or
without peephole connections, as it is never necessary here to close the output gate for more
than one time step (see bottom row of Figure 5.4).

42 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

0.5

i

20

10

1 ““4;4:»\;‘;#444—4 WT4- 1 ip o st " “ “ .
No i A i
i yout+
y(p"A o Yo {o o @ o fo
0 ¢eo 0 &4 k& &
0 10 20 30 0 10 20 30
Time Time

Figure 5.4: Two ways to time. Test run with trained LSTM networks for the MSD task with
F=10and I(n) € {0,1}. Top: target values t; and network output y;; middle: cell state s, and
cell output y.; bottom: activation of the input gate y;,, forget gate y,,, and output gate y,y;.

Why may the output gate be left open? Targets occur rarely, hence the network output
can be ignored most of the time. Since there is only one memory block, mutual perturbation of
blocks is not possible. This type of reasoning is invalid though for more complex measuring tasks
involving larger nets or more frequent targets. Figure 5.5 shows the behavior of LSTM in such
a regime. With peephole LSTM the output gate opens only when a target is provided, whereas
conventional LSTM does not learn this behavior. Note that in some cases these “cleaner”
solutions with peephole connections took longer to be learned (compare Tables 5.1 and 5.2,
because they require more complex behavior.

5.5. EXPERIMENTS 43

3
I
k+
1Y |
hind o
4 R
0
SC+
y© =
LR o Pt — . 1 passay et S A d Aekok deA bbb Ak
n, & y 7
i N o o
i
out_,
Yk | F
06 y e © OO
o o o
0 - :(:)(:)???. 0 %000 eleloYets) OOOOOO
0 10 20 30 40 50 60 20
Time Time

Figure 5.5: Behavior of peephole LSTM (left) versus LSTM (right) for the MSD task with F'=10
and I(n) € {0,1,2}. Top: target values t; and network output yi; middle: cell state s, and cell
output y.; bottom: activation of the input gate y;,, forget gate y,,, and output gate y,y;-

5.5.3 Generating Timed Spikes (GTS).

The GTS task reverses the roles of inputs and targets of the MSD task: the spike train 7'(n),
defined as for the MSD task, now is the network’s target, while the delay I(n) is provided as
input.

GTS Results. The GTS task could not be learned by networks without peephole connec-
tions; thus we report results with peephole LSTM only. Results with various minimum spike
intervals F' (Figure 5.6) suggest that the required training time increases dramatically with F,
as with the NMSD task (Section 5.5.2). The network output during a successful test run for the
GTS task with F =10 is shown on the top left of Figure 5.7. Peephole LSTM also solves the
task for F'=10 and I(n) € {0,1} or {0, 1,2}, as shown in Figure 5.6 (left).

44 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

s 3

Peephole LSTM o
F | I(n) € 9oL, | Train. [10°] ‘%’
10| {0} 100 41+4 E2]
20| {0} 100 67 +8 o
30| {0} 80 | 845+ 82 n
10| {0} 100 | 1152 % 101 1
50 | {0} 100 | 2538 + 343 £
10 | {o,1} 50 | 1647 + 46 = ‘ ‘ ‘
10 [{0,1,2} 30 954 + 393 0 10 20 30 40 50

Time Delay F

Figure 5.6: Results for the GTS task. Table (left) shows the minimum spike interval F', the set
of delays I(n), the percentage of perfect solutions found, and the mean and standard derivation
of the number of training streams required. Graph (right) plots the number of training streams
against the minimum spike interval F', for I(n) € {0}.

GTS Analysis. Figure 5.7 shows test runs with trained networks for the GTS task. The
output gates open only at the onset of a spike and close again immediately afterwards. Hence,
during a spike, the output of the cell equals its state (middle row of Figure 5.7). The opening
of the output gate is triggered by the cell state s.: it starts to open once the input from the
peephole connection outweighs a negative bias. The opening self-reinforces via a connection
from the cell output, which produces the high nonlinearity necessary for generating the spike.
This process is terminated by the closing of the forget gate, triggered by the cell output spike.
Simultaneously the input gate closes, so that s, is reset.

In the particular solution shown on the right-hand side of Figure 5.7 for F' = 50, the role
of the forget gate in this process is taken over by a negative self-recurrent connection of the
cell in conjunction with a simultaneous opening of the other two gates. We tentatively removed
the forget gate (by pinning its activation to 1.0) without changing the weights learned with the
forget gate’s help. The network then quickly learned a perfect solution. Learning from scratch
without forget gate, however, never yields a solution! The forget gate is essential during the
learning phase, where it prevents the accumulation of irrelevant errors.

The exact timing of a spike is determined by the growth of s., which is tuned through
connections to input gate, forget gate, and the cell itself. To solve GTS for I(n) € {0,1} or
I(n) € {0,1,2}, the network essentially translates the input into a scaling factor for the growth
of s, (Figure 5.8).

5.5.4 Periodic Function Generation (PFG)

We now train LSTM to generate real-valued periodic functions, as opposed to the spike trains
of the GTS task. At each discrete time step we provide a real-valued target, sampled with
frequency F' from a target function f(¢). No input is given to the network.

The task’s degree of difficulty is influenced by the shape of f and the sampling frequency F'.
The former can be partially characterized by the absolute maximal values of its first and second
derivatives, max |f’| and max |f"|. Since we work in discrete time, and with non-differentiable

5.5. EXPERIMENTS 45

1 1
tkk ------ tkk -----
y' a
0 N N
O m
4 > 2
-4 S¢—
SC+ C ..
yc$ ___________
L
1 fasa e e P *
O'OOOOOO OOOoooO OooooOo
ymo 5 of
yout- o
y(p--A A
O =
0 10 20 30 0 50 100 150
Time Time

Figure 5.7: Test run of a trained peephole LSTM network for the GTS task with I(n) € {0},
and a minimum spike interval of F' = 10 (left) vs. F =50 (right). Top: target values t; and
network output yi; middle: cell state s, and cell output y.; bottom: activation of the input gate
Yin, forget gate y,, and output gate y,ys-

step functions, we define:
f1@) = f+1) = f() . max[f] =max|f'(t)], max|f"] = max]|f'(t+1) - f()'] -

Generally speaking, the larger these values, the harder the task. F' determines the number of
distinguishable internal states required to represent the periodic function in internal state space.
The larger F, the harder the task. We generate sine waves fcos, triangular functions fi,;, and
rectangular functions frect, all ranging between 0.0 and 1.0, each sampled with two frequencies,

46 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

50 60 70 80 90 100
Time
Figure 5.8: Test run of a trained peephole LSTM network for the GTS task with F =10 and

I(n) € {0,1,2}. Top: target values t; and network output y; middle: cell state s, and cell
output ¥.; bottom: activation of the input gate y;,, forget gate y,, and output gate yyys-

F=10 and F=25:

1 2m t
feos(t) =) (1 — Cos (T)) = max | feos| = max | feos| = 7/F
tmodF F
_ if (tmodF)> %
ftl'l = { tmOdF otherwise 2 = max |ftr1| = 2/F ma,x\ tr1| = 4/F
_ if (tmodT) >
frect(t) = { otherw1se 3 = max |floq¢| = max|fro[=1.

5.5. EXPERIMENTS 47
LSTM Peephole LSTM
tgt- | p | 9% [Training % | Training
fn. Sol. | Str. [10?] MSE Sol. | Str. [10%] MSE

10 || 90 | 2477 341 | 0.13 £0.033 || 100 | 145+32 | 0.18 + 0.016

feos 25170 > 10000 — 60 | 149+£7 |0.17 £0.019
10| 0| > 10000 — 100 | 869+ 204 | 0.13 + 0.014

Joi [25 0] > 10000 — 50 | 4063 £ 303 | 0.13 £ 0.024
10| 0| > 10000 — 80 | 1107 £97 | 0.12 £0.014

Jrect [25 0 > 10000 — 20 | 748 £278 | 0.12 % 0.012

Table 5.3: Results for the PFG task, showing target function f, sampling frequency F', the
percentage of perfect solutions found, and the mean and standard derivation of the number of
training streams required, as well as of the root mean squared error v M SFE for the final test
run.

PFG Results. Our experimental results for the PFG task are summarized in Table 5.3.
Peephole LSTM found perfect, stable solutions for all target functions (Figure 5.9). LSTM
without peephole connections could solve only feos with F'=10, requiring many more training
streams. Without forget gates, LSTM never learned to predict the waveform for more than
two successive periods.

The duration of training roughly reflected our criteria for task difficulty. We did not try
to achieve maximal accuracy for each task: training was stopped once the “perfect solution”
criteria were fulfilled. Accuracy can be improved by decreasing the tolerated maximum output
error €;'*” during training, albeit at a significant increase in training duration. Decreasing e}'**
by one half (to 0.15) for fecos with F'=25 also reduces the average v M SE of solutions by about
one half, from 0.17 + 0.019 down to 0.086 £ 0.002. Perfect solutions were learned in all cases,
but only after (2704 + 49) - 10 training streams, as opposed to (149 4+ 7) - 10® training streams
(yielding 60% solutions) before.

PFG Analysis. For the PFG task, the networks do not have any external input, so updates
depend on the internal cell states only. Hence, in a stable solution for a periodic target function
tr(t) the cell states s, also have to follow some periodic trajectory s(t) phase-locked to tx(t). Since
the cell output is the only time-varying input to gates and output units, it must simultaneously
minimize the error at the output units and provide adequate input to the gates. An example
of how these two requirement can be combined in one solution is shown in Figure 5.10 for fcog
with F'=10. This task can be solved with or without peephole connections because the output
gate never needs to be closed completely, so that all gates can base their control on the cell
output.

Why did LSTM networks without peephole connections never learn the target function fcog
for F' =25, although they did learn it for F =107 The output gate is part of an uncontrolled
feedback loop: its activation directly determines its own input (here: its only input, except
for the bias) via the connection to the cell output — but no errors are propagated back on
this connection. The same is true for the other gates, except that output gating can block
their (thus incomplete) feedback loop. This makes an adaptive LSTM memory block without
peephole connections more difficult to tune. Additional support for this reasoning stems from
the fact that networks with peephole connections learn fcos with F'=10 much faster (see Table
5.3). The peephole weights of solutions are typically of the same magnitude as the weights of

48 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

Ll LA L

\ I i I
0 10 20 30 40 0 25 50 75 100
Time Time

Figure 5.9: Target values t; and network output 7 during test runs of trained peephole LSTM
networks on the PFG task for the periodic functions fcos (top), fiyi (middle), and frecq (bot-
tom), with periods F =10 (left) and F'=25 (right).

connections from cell output to gates, which shows that they are indeed used even though they
are not mandatory for this task.

The target functions fi,; and freet required peephole connections for both values of F.
Figure 5.11 shows typical network solutions for the froct target function. The cell output y*
equals the cell state s, in the second half of each period (when froect = 1) and is zero in the first
half, because the output gate closes the cell (triggered by s., which is accessed via the peephole
connections). The timing information is read off s, as explained in Section 5.5.2. Furthermore,
the two states of the frect function are distinguished: s, is counted up when froet = 0 and
counted down again when froct = 1. This is achieved through a negative connection from the
cell output to the the cell input, feeding negative input into the cell only when the output gate

5.5. EXPERIMENTS 49

.

VAR

S.—+

y° <

-A-h ke
A.&* -kA
Ay A

0000000000
0 y"t"o' 10 20 30 0 y":'O' 10 20 30
yo = Time yo =+ Time
yo- Yo

Figure 5.10: Test runs of a trained LSTM network with (right) vs. without (left) peephole
connections on the fcos PFG task with F'=10. Top: target values t; and network output y;
middle: cell state s. and cell output y.; bottom: activation of the input gate y;,, forget gate y,,
and output gate yoyi-

is open; otherwise the input is dominated by the positive bias connection. Networks without
peephole connections cannot use this mechanism, and did not find any alternative solution.
Throughout all experiments peephole connections were necessary to trigger the opening of gates
while the output gate was closed, by granting unrestricted access to the timer implemented by
the CEC. The gates learned to combine this information with their bias so as to open on reaching
a certain trigger threshold.

50 CHAPTER 5. LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

Time Time

Figure 5.11: Test runs of trained peephole LSTM networks on the froct PFG task with F'=10
(left) and F'=25 (right). Top: target values ¢; and network output yg; middle: cell state s, and
cell output y.; bottom: activation of the input gate y;,, forget gate y,, and output gate y,y:-

5.6. CONCLUSION 51

‘ 0.2
5]e e] e vovovevenevenvs svet
P e n S S
o in_g =
on out, | o1
_> 3 y .
0.9 y®
-4 R AL I T Y Y Y Y Y YYYYY
® OOOO 0000DO0000OO000 0
0 5 10 15 20 0 5 10 15 20
Cycle Cycle

Figure 5.12: Cell states and gate activations at the onset (zero phase) of the first 20 cycles
during a test run with a trained LSTM network on the fcos PFG task with F=10. Note that
the initial state (at cycle 0) is quite far from the equilibrium state.

5.5.5 General Observation: Network initialization

At the beginning of each stream cell states and gate activations are initialized to zero. This initial
state is almost always quite far from the corresponding state in the same phase of later periods
in the stream. Figure 5.12 illustrates this for the fcos task. After few consecutive periods, cell
states and gate activations of successful networks tend to settle to very stable, phase-specific
values, which are typically quite different from the corresponding values in the first period. This
suggests that the initial state of the network should be learned as well, as proposed by Forcada
and Carrasco (1995), instead of arbitrarily initializing it to zero.

5.6 Conclusion

Previous work on LSTM did not require the network to extract relevant information conveyed
by the duration of intervals between events. Here we show that LSTM can solve such highly
nonlinear tasks as well, by learning to precisely measure time intervals, provided we furnish
LSTM cells with peephole connections that allow them to inspect their current internal states.
It is remarkable that peephole LSTM can learn exact and extremely robust timing algorithms
without teacher forcing, even in case of very uninformative, rarely changing target signals. This
makes it a promising approach for numerous real-world tasks whose solution partly depend on
the precise duration of intervals between relevant events.

52

CHAPTER 5.

LEARNING PRECISE TIMING WITH PEEPHOLE LSTM

Chapter 6

Simple Context Free and Context
Sensitive Languages

6.1 Introduction

Previous work showed that LSTM outperforms traditional RNN algorithms on tasks that require
to learn the rules of regular languages (RLs), see Chapter 3 and Hochreiter and Schmidhuber
(1997). RLs are describable by deterministic finite state automata (DFA) (Casey, 1996; Siegel-
mann, 1992; Blair & Pollack, 1997; Kalinke & Lehmann, 1998; Zeng, Goodman, & Smyth,
1994”). Until now, however, it has remained unclear whether LSTM’s superiority carries over
to tasks involving context free languages (CFLs), such as those discussed in the RNN literature
(Sun, Giles, Chen, & Lee, 1993; Wiles & Elman, 1995; Steijvers & Grunwald, 1996; Tonkes &
Wiles, 1997; Rodriguez, Wiles, & Elman, 1999; Rodriguez & Wiles, 1998). Their recognition
requires the functional equivalent of a stack. It is conceivable that LSTM has just the right bias
for RLs but might fail on CFLs.

Here we will focus on the most common CFLs benchmarks found in the RNN literature:
a™b” and a"b™B™A"™. We study questions such as:

e Can LSTM learn the functional equivalent of a pushdown automaton?

e Given training sequences up to size n, can it generalize ton+ 1,n+2,... 7
e How stable are the solutions?

e Does LSTM outperform previous approaches?

Finally we will apply LSTM to a context sensitive language (CSL). The CSLs include the
CFLs, which include the RLs. We will focus on the classic example a™b"™c", which is a CSL
but not a CFL (Section 6.2). In general, CSL recognition requires a linear-bounded automaton,
a special Turing machine whose tape length is at most linear in the input size. The {a™b"c"}
language is one of the simplest CSLs; it can be generated by a tree-adjoined grammar and
recognized using a so-called embedded push-down automaton (Vijay-Shanker, 1992) or a finite

53

54 CHAPTER 6. SIMPLE CONTEXT FREE AND CONTEXT SENSITIVE LANGUAGES

state automaton with access to two counters that can be incremented or decremented. To our
knowledge no RNN has been able to learn a CSL.

We are using LSTM with forget gates and peephole connections introduced in the previous
chapters.

6.2 Experiments

The network sequentially observes exemplary symbol strings of a given language, presented one
input symbol at a time. Following the traditional approach in the RNN literature we formulate
the task as a prediction task. At any given time step the target is to predict the possible next
symbols, including the ”end of string” symbol 7. When more than one symbol can occur in the
next step all possible symbols have to be predicted, and none of the others.

The network sequentially observes exemplary symbol strings of a given language, presented one
input symbol at a time, also referred to as input sequences. Every input sequence begins with
the start symbol S. The empty string, consisting of ST only, is considered part of each language.
A string is accepted when all predictions have been correct. Otherwise it is rejected.

This prediction task is equivalent to a classification task with two classes “accept” and “reject,”
because the system will make prediction errors for all strings outside the language. A system
has learned a given language up to string size n once it is able to correctly predict all strings
with size < n.

Symbols are encoded locally by d-dimensional binary vectors with only one non-zero compo-
nent, where d equals the number of language symbols plus one for either the start symbol in the
input or the ”end of string” symbol in the output (d input units, d output units). +1 signifies
that a symbol is set and —1 that it is not; the decision boundary for the network output is 0.0.

CFL a™b" (Sun et al., 1993; Wiles & Elman, 1995; Tonkes & Wiles, 1997; Rodriguez et al.,
1999). Here the strings in the input sequences are of the form a"b"; input and output vectors are
3-dimensional. Prior to the first occurrence of b either a or b, or a or T' at sequence beginnings,
are possible in the next step. Thus, e.g., for n=>5:

Inéput: S a a a a a bbbbb
Target: a/T a/b a/b a/b a/b a/b b bbb T
An example for a set of context-free production rules for the a"b" grammar is: S = « | ¢, a —
aab | €, where S is the starting symbol, « is a non-terminal symbol and € is the empty string.
CFL a"b™B™A"™ (Rodriguez & Wiles, 1998). The second half of a string from this palin-
drome or mirror language is completely predictable from the first half. The task involves an
intermediate time lag of length 2m. Input and output vectors are 5-dimensional. Prior to the
first occurrence of B two symbols are possible in the next step. Thus, e.g., for n=4,m=3:

Input: S a a a a b b b BBBAAAA
Target: a/T a/b a/b a/b a/b b/B b/B b/B B B A A A AT

The a™b™B™A™ grammar can be produced by similar context-free rules as the a™b" grammar
using two non-terminal symbols (¢ and 8): S > a|e; a—aaA|e|f; B —>DbSB|e.

CSL a™b"c". Input and output vectors are 4-dimensional. Prior to the first occurrence of b
two symbols are possible in the next step. Thus, e.g., for n=>5:

Input: S a a a a a bbbbbccccec
Target: a/T a/b a/b a/b a/b a/b bbb bccccecT

6.2. EXPERIMENTS 55

The pumping Lemma for context-free languages can be applied to show that a"b"c" is not
context-free. An intuitive explanation is that it is necessary to consider the number of a symbols

then producing b and ¢ symbols, this requires context information.

6.2.1 Training and Testing

Learning and testing alternate: after each epoch (= 1000 training sequences) we freeze the
weights and run a test. Even when all strings are processed correctly during training, it is
necessary to test again with frozen weights once all weight changes have been executed. Apart
from ensuring the learning of the training set the test also determines generalization performance,
which we did not optimize by using, say, a validation set.

Training and test sets incorporate all legal strings up to a given length: 2n for a™b", 3n for

a™b"c" and 2(n + m) for a"b™B™A"™. Training strings are presented in random order. Only
exemplars from the class “accept” are presented. Training is stopped once all training sequences
have been accepted, or after at most 107 training sequences. The generalization set is the largest
accepted test set (assuming that the network generalizes at all).
Weight changes are made after each sequence. We apply the momentum algorithm (Plaut et al.,
1986) with learning rate « is 10> and momentum parameter 0.99. All results are averages over
10 independently trained networks with different weight initializations (these 10 initializations
are identical for each experiment).

CFL a™b". We study training sets with n€{1,.., N}. We test all sets with ne€ {1,.., M} and
M €{N,..,1000} (sequences of length < 2000).

CFL a"b™B™A™. We use two training sets: a) The same set as used by Rodriguez and
Wiles (1999) : n € {1,..,11}, m € {1,..,11} with n +m < 12 (sequences of length < 24). b)
The set given by n € {1,..,11}, m € {1,..,11} (sequences of length < 44). We test all sets with
ne{l,.,M}, me{l,..,M} and M €{11,..,50} (sequences of length < 200).

CSL a™b"c". We study two kinds of training sets: a) with n € {1,.., N} and b) with
n € {N —1,N}. Case b) asks for a major generalization step that seems almost impossible
at first glance: Given very similar training sequences whose sizes differ by at most 2, learn to
process sequences of arbitrary size! We test all sets with n € {L,.., M}, Le {1,.., N — 1} and
M e{N,..,500} (sequences of length < 1500).

6.2.2 Network Topology and Experimental Parameters

The input units are fully connected to a hidden layer consisting of memory blocks with 1 cell
each. The cell outputs are fully connected to the cell inputs, to all gates, and to the output units,
which also have direct “shortcut” connections from the input units (Figure 6.1). For each task
we selected the topology with minimal number of memory blocks that solved the task without
extensive parameter optimization. Larger topologies never led to disadvantages except for an
increase in computational complexity.

All gates, the cell itself and the output unit are biased. The bias weights to input gate,
forget gate and output gate are initialized with —1.0, +2.0 and —2.0, respectively. Although
not critical, these values have been found empirically to work well; we use them for all our
experiments. The forget gates start off closed, so that the cells initially remember everything. We
also tried different bias configurations; the results were qualitatively the same, which supports
our claim that precise initialization is not critical. All other weights are initialized randomly
in the range [—0.1,0.1]. The cell’s input squashing function g is the identity function. The
squashing function of the output units is a sigmoid function with the range [—2, 2].

56 CHAPTER 6. SIMPLE CONTEXT FREE AND CONTEXT SENSITIVE LANGUAGES

Figure 6.1: Three-layer LSTM topology with a single input and output. Recurrence is limited
to the hidden layer, consisting here of a single LSTM memory block with a single cell. All 10
“unit-to-unit” connections are shown (but bias and peephole connections are not).

Reference Hidden | Train. Train. Sol./ | Best Test
Units | Set [n] | Str. [10%] | Tri. [n]
(Sun et al., 1993)! 5 1,..,160 13.5 1/1 1,..,160
(Wiles & Elman, 1995) 2 1,.,11 2000 4/20 1,..,18
(Tonkes & Wiles, 1997) 2 1,..,10 10 13/100 | 1,..,12
(Rodriguez et al., 1999)? 2 1,..,11 267 8/50 1,..,16

Table 6.1: Previous results for the CFL a™b", showing (from left to right) the number of hidden
units or state units, the values of n used during training, the number of training sequences, the
number of found solutions/trials and the largest accepted test set.

CFL a"b". We use one memory block (with one cell). With peephole connections there are
38 adjustable weights (3 peephole, 28 unit-to-unit and 7 bias connections).

CFL o"b™B™A"™. We use two blocks with one cell each, resulting in 110 adjustable weights
(6 peephole, 91 unit-to-unit and 13 bias connections).

CSL a™b"c". We use the same topology as for the a™b™ B™ A" language, but with 4 input
and output units instead of 5, resulting in 90 adjustable weights (6 peephole, 72 unit-to-unit
and 12 bias connections).

6.2.3 Previous results

CFL a"b™. Published results on the a™b" language are summarized in Table 6.1. RNNs trained

!Sun’s training set was augmented stepwise by sequences misclassified during testing, and in the final accepted
set n was in {1,..,20} except for 20 random sequences up to length n=160 (the exact generalization performance
was unclear).

2 Applying brute force search to the weights of the best network of Rodriguez et al. (1999) further improves
performance to acceptance up to n=28.

6.2. EXPERIMENTS 57

Train. Train. % Generalization
Set [n] | Str. [103] | Sol. Set [n]
1,,10 | 22 (19) | 100 | L,..,1000 (1,.., 118)
1,.,20 | 18 (19) | 100 | 1,..,587 (1,..,148)
1,.,30 | 16 (19) | 100 | 1,..,1000 (1,..,408)
1,.,40 | 25 (28) | 100 | 1,..,1000 (1,..,628)
1,..,50 | 42 (40) | 100 | 1,..,767 (1,..,430)

Table 6.2: Results for the a"b™ language, showing (from left to right) the values for n used during
training, the average number of training sequences until best generalization was achieved, the
percentage of correct solutions and the best generalization (average over all networks given in
parenthesis).

with plain BPTT tend to learn to just reproduce the input (Wiles & Elman, 1995; Tonkes &
Wiles, 1997; Rodriguez et al., 1999). Sun et al. (1993) used a highly specialized architecture,
the “neural pushdown automaton”, which also did not generalize well (Sun et al., 1993; Das,
Giles, & Sun, 1992).

CFL a"b™B™A". Rodriguez and Wiles (1998) used BPTT-RNNs with 5 hidden nodes.
After training with 51 - 10% strings with n +m < 12 (sequences of length < 24), most networks
generalized on longer off-training set strings. The best network generalized to sequences up to
length 36 (n = 9, = 9). But none of them learned the complete training set.

CSL a™"b"c". To our knowledge no previous RNN ever learned a CSL.

6.2.4 LSTM Results

CFL a"b". 100% solved for all training sets (Table 6.2). Small training sets (n € {1,..,10})
were already sufficient for perfect generalization up to the tested maximum: n € {1,..,1000}.
Note that long sequences of this kind require very stable, finely tuned control of the network’s
internal counters (Casey, 1996).

This performance is much better than that of previous approaches, where the largest set was
learned by the specially designed neural push-down automaton (Sun et al., 1993; Das et al.,
1992): n€{1,..,160}. The latter, however, required training sequences of the same length as the
test sequences. From the training set with n € {1,..,10} LSTM generalized to n € {1,..,1000},
whereas the best previous result (see Table 6.1) generalized only to n € {1,..,18} (even with
a slightly larger training set: n € {1,..,11}). In contrast to Tonkes and Wiles (1997), we did
not observe our networks forgetting solutions as training progresses. So unlike all previous
approaches, LSTM reliably finds solutions that generalize well.

The fluctuations in generalization performance for different training sets in Table 6.2 may be
due to the fact that we did not optimize generalization performance by using a validation set.
Instead we simply stopped each epoch (= 1000 sequences) once the training set was learned.

CFL a"b™B™A". Training set a): 100% solved; after 29 - 10® training sequences the best
network of 10 generalized to at least n,m € {1,..,22} (all strings up to a length of 88 symbols
processed correctly); the average generalization set was the one with n,mée{1,..,16} (all strings
up to a length of 64 symbols processed correctly), learned after 25 - 103 training sequences on
average.

Training set b): 100% solved; after 26 - 10® training sequences the best network generalized

58 CHAPTER 6. SIMPLE CONTEXT FREE AND CONTEXT SENSITIVE LANGUAGES

Train. Train. % Generalization
Set [n] | Str. [10%] | Sol. Set [n]

1,,10 | 54(62) | 100 | 1,.,52 (L,..,28)
1,.,20 | 28 (43) | 100 | L,..,160 (L,..,66)
1,.,30 | 37 (43) | 100 | 1,..,228 (L,..,91)
1,..,40 | 51 (48) | 90 | 1...,500 (L,.., 120)
1,.,50 | 60 (94) | 100 | 1,..,500 (1,..,409)
10,11 | 24 (78) | 100 | 9,.,12 (10,.,11)
20,21 | 829 (626) | 40 | 10,.,27 (17,..,23

(17,..,23)
30,31 | 42 (855) | 30 | 29,..,34 (29...,32)
40,41 | 854 (1597) | 40 | 20,..,57 (35,..,45)
50,51 | 32 (621) | 60 | 43,.,57 (47,..,55)

Table 6.3: Results for the a"b"c™ language, showing (from left to right) the values for n used
during training, the average number of training sequences until best generalization was achieved,
the percentage of correct solutions and the best generalization (average over all networks in
parenthesis).

to at least n,m € {1,..,23} (all strings until a length of 92 symbols processed correctly). The
average generalization set was the one with n,m € {1,..,17} (all strings until a length of 68
symbols processed correctly), learned after 82 - 10® training sequences on average. Unlike the
previous approach of Rodriguez and Wiles (1998), LSTM easily learns the complete training set
and reliably finds solutions that generalize well.

CSL a™b"c". LSTM learns 4 of the 5 training sets in 10 out of 10 trials (only 9 out of
10 for the training set with n € {1,..,40}) and generalizes well (Table 6.3). Small training sets
(n € {1,..,40}) were already sufficient for perfect generalization up to the tested maximum:
n € {1,..,500}, that is, sequences of length up to 1500. Even in absence of any short training
sequences (n€{N — 1, N}) LSTM learned well (see bottom half of Table 6.3).

We also modified the training procedure, by presenting each exemplary string without pro-
viding all possible next symbols as targets, but only the symbol that actually occurs in the
current exemplar. This led to slightly longer training durations, but did not significantly change
the results.

6.2.5 Analysis

How do the solutions discovered by LSTM work?

CFL a"b". Figure 6.2 shows a test run with a network solution for n =5. The cell state
S. increases while a symbols are fed into the network, then decreases (with the same step size)
while b symbols are fed in. At sequence beginnings (when the first a symbols are observed),
however, the step size is smaller due to the closed input gate, which is triggered by s, itself.
This results in “overshooting” the initial value of s. at the end of a sequence, which in turn
triggers the opening of the output gate, which in turn leads to the prediction of the sequence
termination.

CFL a"b"™B™A™. The behavior of a typical network solution is shown in Figure 6.3. The
network learned to establish and control two counters. The two symbol pairs (a, A) and (b, B)
are treated separately by two different cells, c2 and ¢, respectively. Cell ¢y tracks the difference

6.2. EXPERIMENTS

S a
a a
T b

59

: input
: target

M A o
K Ax® e
M 1® e

—H oo
® X 1

0.0

| | | | |

Tl
0O 1 2 3 4 5 6

8 9 10 Time

Figure 6.2: CFL a™b™ (n = 5): Test run with network solutions. Top: Network output y.
Middle: Cell state s, and cell output y.. Bottom: Activations of the gates (input gate vy,

forget gate y, and output gate Yout)-

between the number of observed a and A symbols. It opens only at the end of a string, where it
predicts the final T'. Cell ¢; treats the embedded ™ B™ substring in a similar way. While values
are stored and manipulated within a cell, the output gate remains closed. This prevents the cell
from disturbing the rest of the network and also protects its CEC against incoming errors.

CSL a™b"c™. The network solutions use a combination of two counters, instantiated sepa-
rately in the two memory blocks (Figure 6.4). Here the second cell counts up, given an a input
symbol. It counts down, given a b. A ¢ in the input causes the input gate to close and the
forget gate to reset the cell state s.. The second memory block does the same for b, ¢, and a,

60 CHAPTER 6. SIMPLE CONTEXT FREE AND CONTEXT SENSITIVE LANGUAGES

0 5 10 15 Time

Figure 6.3: CFL a"0™B™A"™ (n=>5,m =4): Test run with network solution. Top: Network
output yg. Middle: Cell state s. and cell output y.. Bottom: Activations of the gates (input
gate v, forget gate y, and output gate yoy).

respectively. The opening of output gate of the first block indicates the end of a string (and the
prediction of the last T'), triggered via its peephole connection.

Why does the network not generalize for short strings when using only two training strings as
for the a"b™c" language (see Table 6.3)7 The gate activations in Figure 6.4 show that activations

6.2. EXPERIMENTS 61

Saaaaaabbbbbbcccccc :input
@T@%%%%%bbbbbccccccT . target
PR <K

0 5 10 I5 Time

Figure 6.4: CSL a™b"c" (n = 5): Test run with network solution (the system scales up to
sequences of length 1000 and more). Top: Network output y,. Middle: Cell state s, and cell
output y.. Bottom: Activations of the gates (input gate y;,, forget gate y, and output gate

yout) .

slightly drift even when the input stays constant. Solutions take this state drift into account,
and will not work without it or with too much of it, as in the case when the sequences are much
shorter or longer than the few observed training examples. This imposes a limit on generalization
in both directions (towards longer and shorter strings). We found solutions with less drift to
generalize better.

Further improvements. Even better results can be obtained through increased training
time and stepwise reduction of the learning rate, as done in (Rodriguez et al., 1999). The distri-
bution of lengths of sequences in the training set also affects learning speed and generalization.

62 CHAPTER 6. SIMPLE CONTEXT FREE AND CONTEXT SENSITIVE LANGUAGES

A set containing more long sequences improves generalization for longer sequences. Omitting
the sequence with n=1 (and m =1), typically the last one to be learned, has the same effect.
Training sets with many short and many long sequences are learned more quickly than uniformly
distributed ones.

Related tasks. The (ba*)" regular language is related to a™b” in the sense that it requires
to learn a counter, but the counter never needs counting down. This task is equivalent to the
“Generating timed spikes” task (Section 5.5.3) learned by LSTM for k£ = 50 with » > 1000. A
hand-made, hardwired solution (no learning) of a second order RNN worked for values of k until
120 (Steijvers & Grunwald, 1996).

For all three tasks peephole connections are mandatory. The output gates remain closed for
substantial time periods during each input sequence presentation (compare Figures 6.2, 6.3 and
6.4); the end of such a period is always triggered via peephole connections.

6.3 Conclusion

We found that LSTM clearly outperforms previous RNNs not only on regular language bench-
marks (according to previous research) but also on context free language (CFL) benchmarks;
it learns faster and generalizes better. LSTM also is the first RNN to learn a context sensitive
language.

Although CFLs like those studied here may also be learnable by certain discrete symbolic
grammar learning algorithms (SGLAs) (Sakakibara, 1997; Lee, 1996; Osborne & Briscoe, 1997),
the latter exhibit more task-specific bias, and are not designed to solve numerous other sequence
processing tasks involving noise, real-valued inputs / internal states, and continuous output tra-
jectories, which LSTM solves easily (see previous chapters and Hochreiter and Schmidhuber
(1997)). SGLAs include a large range of methods, such as decision-tree algorithms (see e.g.,
Quinlan (1992)), case-based and explanation-bases reasoning (see e.g., Mitchell, Keller, and
Kedar-Cabelli (1986), Porter, Bruce, Bareiss, and Holte (1990)), and inductive logic program-
ming (see e.g., Zelle and Mooney (1993)).

Our findings reinforce the perception that LSTM is a very general and promising adaptive
sequence processing device, with a wider field of potential applications than alternative RNNs.

Chapter 7

Time Series Predictable Through
Time-Window Approaches

7.1 Introduction

In the previous chapters we have applied LSTM to numerous temporal processing tasks, such
as: continual grammar problems, recognition of temporally extended, noisy patterns (Chapter
3); arithmetic operations on continual input streams and robust storage of real numbers across
extended time intervals (Chapter 4); extraction of information conveyed by the temporal distance
between events and generation of precisely timed events (Chapter 5); stable generation of smooth
and highly nonlinear periodic trajectories (Chapter 5); Recognition of regular and context free
and context sensitive languages (Chapter 6).

Time series benchmark problems found in the literature, however, often are conceptually
simpler than the above. They often do not require RNNs at all, because all relevant information
about the next event is conveyed by a few recent events contained within a small time window.
Here we apply LSTM to such relatively simple tasks, to establish a limit to the capabilities of
the LSTM-algorithm in its current form. We focus on two intensively studied tasks, namely,
prediction of the Mackey-Glass series (Mackey & Glass, 1977) and chaotic laser data (Set A)
from a contest at the Santa Fe Institute (1992).

LSTM is run as a “pure” autoregressive (AR) model that can only access input from the
current time-step, reading one input at a time, while its competitors — e.g., multi-layer percep-
trons (MLPs) trained by back-propagation (BP) — simultaneously see several successive inputs
in a suitably chosen time window. Note that Time-Delay Neural Networks (TDNNs) (Haffner &
Waibel, 1992) are not purely AR, because they allow for direct access to past events. Neither are
NARX networks (Lin et al., 1996) which allow for several distinct input time windows (possibly
of size one) with different temporal offsets.

We also evaluate stepwise versus iterated training as proposed by Principe and Kuo (1995) to
make RNNs learn a dynamic attractor rather than simply approximate output. It was found by
Principe, Rathie, and Kuo (1992) that neural networks trained with iterative training outperform
traditional prediction algorithms in approximating “real” chaotic attractors. Bakker, Schouten,

63

64CHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

Figure 7.1: AR-RNN setup for time series prediction.

Giles, Takens, and Bleek (2000) refined the iterated training scheme and found it superior to
stepwise training. Here we cannot generally confirm this result.

7.2 Experimental Setup

The task is to use currently available points in the time series to predict the future point, ¢t + 7.
The target for the network ¢y, is the difference between the values z(¢t+p) of the time series p steps
ahead and the current value z(¢) multiplied by a scaling factor fs: tx(t)=/fs- (z(t + p)—z(t)) =
fs - Ax(t). fs scales Az(t) between —1 and 1 for the training set, the same value for f; is used
during testing. The predicted value is the network output divided by fs plus z(¢) (Figure 7.1).
During iterated prediction with T'=n* p the output is clamped to the input (self-iteration) and
the predicted values are fed back n times. For direct prediction p=T and n=1; for single-step
prediction p=1 and n="T..

Note that during iterated prediction, the network state after the first prediction has to be
stored and re-established after the last self-iterations. For the iterated prediction with p > 1
and n > 1 the setup becomes more complex: p copies of the network have to predict in parallel.
The network predicting x(t + n - p) starts with z(¢), and feeds back the predicted values n—1
times to the input before the same procedure is executed with a second network starting with
z(t + 1) at the task of predicting z(¢t + 1 + n - p). The internal network state is indirectly also
trained to move from s(¢) to s(t+p) in one iteration. Hence, the iterated prediction of one series
with step-size p > 1 results in the parallel prediction of p series with p different starting points:
tstart =0,1,2,...,p—1. For example, given T=84 and p=6 (= n=14), we start at ts gt =0
and iterate 14 times to predict the value at t=284. We then use another copy of the network to
predict t=84 + 1 starting at tsq-¢ =1 and so forth.

Bakker, Schouten, Giles, Takens, and Bleek (2000) proposed to mix network predictions with
the target values during iterated training. One challenge with this procedure lies in finding the
right mixing coeflicient. Bakker et al. used the same constant value throughout training. This
procedure has the disadvantage that bad predictions at the beginning of the training induce a
lot of “input noise”. We modified Bakker’s idea by introducing a maximum output error e,,q,
for iterated training in place of a mixture. When the error at the output e; was larger than
emaz = 0.5, the output was unclamped and training continued with the next true input value at
t+1+p.

This scheme has the advantage that the number of iterated steps is coupled to training
performance and is in this way self-regularizing. In preliminary experiments we tested our
method using constant prediction-target mixtures having different coefficients. Our method
always learned faster and with fewer network divergences.

The error measure is the normalized root mean squared error: NRMSE = ((y;, — tk)2>% J{(te —

7.3. MACKEY-GLASS CHAOTIC TIME SERIES 65

(tk))Q)%, where yi is the network output and ¢; the target. The reported performance is the
best result of 10 independent trials.

7.2.1 Network Topology

LSTM. The input units are fully connected to a hidden layer consisting of memory blocks with
1 cell each. The cell outputs are fully connected to the cell inputs, to all gates, and to the
output units. All gates, the cell itself and the output unit are biased. Bias weights to input and
output gates are initialized block-wise: —0.5 for the first block, —1.0 for the second, —1.5 for
the third, and so forth. Forget gates are initialized with symmetric positive values: +0.5 for the
first block, +1 for the second block, etc. We also tried a bias configuration with reversed signs
for the initial values. In this case the gates are open (so no gating) and the cells forget almost
immediately. This configuration is similar to a RNN with one fully recurrent hidden layer. The
results were qualitatively the same, which supports our claim that precise initialization is not
critical. All other weights are initialized randomly in the range [—0.1,0.1]. The cell’s input
squashing function g is a sigmoid function with the range [—1,1]. The squashing function of the
output units is the identity function.

To have statistically independent weight updates, we execute weight changes every 50 +
rand(50) steps (where rand(mazx) stands for a random positive integer smaller than maz which
changes after every update). We use a constant learning rate a=107%.

MLP. The MLPs we use for comparison have one hidden layer and are trained with BP. As
with LSTM, the one output unit is linear and Az is the target. The input differs for each task
but in general uses a time window with a time-space embedding. All units are biased and the
learning rate is a=1073.

Note that we do not use IO shortcuts, because they become short circuits during self iteration,
causing exponential growth of the output unit’s activity.

7.3 Mackey-Glass Chaotic Time Series

The Mackey-Glass chaotic time series (Mackey & Glass, 1977) can be generated from the Mackey-
Glass delay-differential equation:

() = azr(t—T)

T l4ac(t-T) pa(t) ()

We generate benchmark sets using the parameters a=0.2, b=0.1, ¢=10 and 7=17. For 7>16.8
the series becomes chaotic. 7=17 results in a quasi-periodic series with a characteristic period
T, = 50, lying on an attractor with fractal dimension D =2.1. To generate these benchmark
sets, 7.1 is integrated using a four-point Runge-Kutta method with step size 0.1 and the initial
condition z(t) =0.8 for ¢ <0. The equation is integrated up to ¢t = 5500, with the points from
t=200 to t=3200 used for training and the points from ¢=5000 to t=>5500 used for testing.
Figure 7.2 shows the first 100 points from the test set. Since the Mackey-Glass time series
is chaotic, it is difficult to predict for values of T' greater than its characteristic period T, of
approximately 50. In the literature a number of different prediction points have been tried:
T € {1,6,84,85,90}. For the comparison of results we consider the predictions with offsets
T € {84,85,90} as equal tasks. For approaches that use as input a time window of past values
it is common to use the four delays t, t—6, t—12 and ¢{—18. These points represent an adequate
delay-state embedding for the prediction of Mackey-Glass series assuming 7' = 6. For further

66CHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

AX@A) g
0.05 |

0S5Se= . . |
0.5 1

Figure 7.2: Mackey-Glass time series (test set). Top-Left: Cut-out of the series. Top-Right:
The first difference for p = 1: Az(t) = (z(t + 1) — z(t)). Bottom-Left: x(¢ + 1) against x(t).
Bottom-Right: Az(t) against z(t).

explanation see, for example, Falco, Iazzetta, Natale, and Tarantino (1998”). As explained
above, LSTM received only the value of z(¢) as input.

7.3.1 Previous Work

In the following sections we attempt to summarize existing attempts to predict these time series.
To allow comparison among approaches, we did not consider works where noise was added to the
task or where training conditions were very different from ours. When not specifically mentioned,
an input time window with time delays t, t—6, t—12 and ¢{—18 or larger was used. The different
approaches are outlined in Table 7.1. Vesanto (1997) offers the best result to date, according
to our knowledge, with a Self-Organizing Map (SOM) approach. The SOM parameters given
in Table 7.2 refers to the prototype vectors of the map. The results from these approaches are
found in Table 7.2. We re-calculated the results for R. Bone et al., because only the NMSE was
given.

7.3.2 Results

The LSTM results are listed at the bottom of Table 7.2. After six single-steps of iterated training
(p=1, T=6, n=06) the LSTM NRMSE for single step prediction (p=T=1, n=1) is: 0.0452.
After 84 single-steps of iterated training (p=1, T =84, n=_84) the LSTM NRMSE for single
step prediction (p=T =1, n=1) is: 0.0809. Figure 7.3 shows iterated prediction results for
LSTM. Increasing the number of memory blocks did not significantly improve the results.
Why did LSTM perform worse than the MLP? The AR-LSTM network does not have access
to the past as part of its input and therefore has to learn to extract and represent a Markov

7.3. MACKEY-GLASS CHAOTIC TIME SERIES 67

Model Author Description

BPNN Day and Davenport (1993) A BP continuous-time feed forward NNs
with two hidden layers and with fixed time
delays.

ATNN Day and Davenport (1993) A BP continuous-time feed forward NNs
with two hidden layers and with adaptable
time delays.

DCS-LMM | Chudy and Farkas (1998) Dynamic Cell Structures combined with
Local Linear Models.

EBPTTRNN| R. Bone, Crucianu, Ver- | RNNs with 10 adaptive delayed connec-

ley, and Asselin de Beauville | tions trained with BPTT combined with
(2000) a constructive algorithm.
BGALR Falco, lazzetta, Natale, and | A genetic algorithm with adaptable input
Tarantino (1998”) time window size (Breeder Genetic Algo-
rithm with Line Recombination).

EPNet Yao and Liu (1997) Evolved neural nets (Evolvable Program-
ming Net).

SOM Vesanto (1997) A Self-organizing map.

Neural Gas | Martinez, Berkovich, and | The Neural Gas algorithm for a Vector

Schulten (1993) Quantization approach.
AMB Bersini, Birattari, and Bon- | An improved memory-based regression
tempi (1998) (MB) method (Platt, 1991) that uses an
adaptive approach to automatically select
the number of regressors (AMB).

Table 7.1: Summary of previous approaches for the prediction of the Mackey-Glass time series.

state (Bakker & Kleij, 2000). In tasks we considered so far this required remembering one or two
events from the past, then using this information before over-writing the same memory cells.
The Mackey-Glass equation, contains the input from ¢—17, hence its implementation requires
the storage of all inputs from t—17 to ¢ (time window approaches consider selected inputs back
to at least t—18). Assuming that any dynamic model needs the event from time ¢—7 with
T = 17, we note that the AR-RNN has to store all inputs from ¢—7 to ¢ and to overwrite them
at the adequate time. This requires the implementation of a circular buffer, a structure quite
difficult for an RNN to simulate. In a TDNN, on the other hand, a circular buffer is inherent
to the network structure.

7.3.3 Analysis

It is interesting that for MLPs (7' =6) it was more effective to transform the task into a one-
step-ahead prediction task and iterate than it was to predict directly (compare the results for
p=1and p=T). It is in general easier to predict fewer steps ahead, the disadvantage being
that during iteration input values have to be replaced by predictions. For T'=6 with p=1 this
affects only the latest value. This advantage is lost for T'= 84 and the results with p =1 are
worse than with p =6, where fewer iterations are necessary. For MLPs, iterated training did
not in general produce better results: it improved performance when the step-size p was 1, and

68CHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

Reference Units | Para. Seq. NMSE
T=1 | T=6 |[T=84
Predict Input:
z(t+T)=x(t) - - 0.1466 | 0.8219 | 1.4485
Linear Predictor - - - 0.0327 0.7173 1.5035
6th-order Polynom.
(Crowder, 1990) - - - - 0.04 0.85
BPNN
(Lapedes & Farber, 1987) - - - - 0.02 0.06
FTNN
(Day & Davenport, 1993) 20 120 7-107 - 0.012 -
ATNN
(Day & Davenport, 1993) | 20 120 7-107 - 0.005 -
Cascade-Correlation
(Crowder, 1990) 20 | ~ 250 - 0.04 0.17
DCS-LLM
(Chudy & Farkas, 1998) 200 | 200% | ~1-10° - 0.0055 | 0.03
EBPTTRNN
(R. Bone et al., 2000) 6 65 - - 0.0115 -
BGALR
(Falco et al., 1998”) 16 | =150 - - 0.2373 | 0.267
EPNet (Yao & Liu, 1997) | =10 | =100 | ~1-10* - 0.02 0.06
SOM - 10x10 | ~ 1.5 - 10* - 0.013 0.06
(Vesanto, 1997) - 35x35 | ~ 1.5-10% - 0.0048 | 0.022
Neural Gas
(Martinez et al., 1993) 400 | 3600 2-10% - - 0.05
AMB (Bersini et al., 1998) - - - - 0.054
MLP, p=T 4 25 1-10* 0.0102 | 0.0511 | 0.4604
MLP, p=T 16 97 1-10* 0.0113 | 0.0502 | 0.4612
MLP, p=1 4 25 1-100 | p=T=1] 0.0241 | 0.4208
MLP, p=1 16 97 1-108 | p=T=1] 0.0252 | 0.4734
MLP, p=1, IT 4 25 1-10* 0.0089 | 0.0191 | 0.4143
MLP, p=1, IT 16 97 1-10* 0.0094 | 0.0205 | 0.3929
MLP, p=6 4 25 1-10* - p=T=6 | 0.1659
MLP, p=6 16 97 1-10* - p=T=6 | 0.1466
MLP, p=6, IT 4 25 1-10* - 0.0946 | 0.3012
MLP, p=6, IT 16 97 1-10* - 0.0945 | 0.2820
LSTM, p=T 4 113 5-10% 0.0214 | 0.1184 [0.4700
LSTM, p=1 4 113 5-10* | p=T=1| 0.1981 | 0.5927
LSTM, p=1, IT 4 113 1-10* s. text | 0.1970 | 0.8157
LSTM, p=6 4 113 5-10* - p=T=6 | 0.2910
LSTM, p=6, IT 4 113 1-10% - 0.1903 | 0.3595

Table 7.2: Results for the Mackey-Glass task, showing (from left to right) the number of units,
the number of parameters (weights for NNs), the number of training sequence presentations,
and the NRMSE for prediction offsets T € {1,6,84}. “IT” stands of iterated training.

7.3. MACKEY-GLASS CHAOTIC TIME SERIES 69

1 1
~ target
05 - *‘ (1‘)=1;n=1‘..6)‘ 105 (P 1;n=6)‘

150 200 time 250 150 200 time 250

] . - target | I target |
o5 L el s (p=lin=84) -
150 200 time 250 100 200 time 300

Figure 7.3: Mackey-Glass time series: Test run with LSTM network solutions. Shown are the
network output as solid lines, and the target . Top-Left: Single step prediction and six iterations
(p=1,T=1,n=1...6) after iterated training. Top-Right: The prediction for T'=6 with n=6,
extracted from the top-left graph. Bottom-Left: The best solution for T'= 84 with p =6 and
n=14. Bottom-Left: The best single-step solution for T'=84 with p=1 and n=2_84.

worsened performance for p=6.

The results for AR-LSTM approach are clearly worse than the results for time window
approaches, for example with MLPs. Iterated training decreased the performance. But surpris-
ingly, the relative performance decrease for one-step prediction was much larger than for iterated
prediction. This indicates that the iteration capabilities were improved (taking in consideration
the over-proportionally worsened one-step prediction performance).

The single-step predictions for LSTM are not accurate enough to follow the series for as
much as 84 steps (Figure 7.3). Instead the LSTM network starts oscillating, having adapted to
the strongest eigen-frequency in the task. During self-iterations, the memory cells tune into this
eigen-oscillation (Figure 7.4), with time constants determined by the interaction of cell state
and forget gate. Most solutions are stable during iterated testing as in the solution shown in
Figure 7.4. Applying a sigmoid squashing function g prevents exponentially growth of the cell
states by limiting their self-reinforcement to be linear. Linear self-reinforcement in turn can be
compensated for by the forget gate. Still it is possible that networks diverge, when the damping
induced by the forget gate is always smaller than the constant reinforcement described above.
This situation might be established via feed back form the cell to the forget gate.

T0CHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

T T T T T T T T T T T T T T T T T T ‘ T T T T
T P Bt gy g e bt B L g g et b R g g e e R
-

o
hot'' g —
-

O 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1]
0] 100 200 tme
Figure 7.4: Test run with network solutions for the Mackey-Glass time series (p =1, T' = 84,

n=284). Shown is a “free” iteration of 250 steps starting with all states set to zero. Top: Network
output 4 and the test set target t. Middle: Cell states s.. Bottom: Activations of the gates.

7.4 Laser Data

This data is set A from the Santa Fe time series prediction competition (Weigend & Gershenfeld,
1993”)1. It consists of one-dimensional data recorded from a Far-Infrared (FIR) laser in a chaotic
state (Huebner, Abraham, & Weiss, 1989). The training set consists of 1,000 points from the
laser, with the task being to predict the next 100 points (Figure 7.5). The main difficulty is to
predict the collapse of activation in the test set, given only two similar events in the training set.
We run tests for stepwise prediction and fully iterated prediction, where the output is clamped
to the input for 100 steps.

!The data is available from http://www.stern.nyu.edu/~aweigend/Time-Series/SantaFe.html.

7.4. LASER DATA 71

VI

trainig ; test
—_—

200 T

100 m 100
Oww | I | P |

0 200 400 600 800 1000 time 0 0 20 40 60 80 100
time
Figure 7.5: FIR-laser Data (Set A) from the Santa Fe time series prediction competition (see
text for details).

For the experiments with MLPs the setup was as described for the Mackey-Glass data but
with an input embedding of the last 9 time steps as in Koskela, Varsta, Heikkonen, and Kaski
(1998).

7.4.1 Previous Work

Results are listed in Table 7.3. Linear prediction is no better than predicting the data-mean.
Wan (1994) achieved the best results submitted to the original Santa Fe contest. He used a
Finite Input Response Network (FIRN) (25 inputs and 12 hidden units), a method similar to
a TDNN. Wan improved performance by replacing the last 25 predicted points by smoothed
values (sFIRN).

Koskela, Varsta, Heikkonen, and Kaski (1998) compared recurrent SOMs (RSOMs) and
MLPs (trained with the Levenberg-Marquardt algorithm) with an input embedding of dimension
9 (an input window with the last 9 values). Bakker, Schouten, Giles, Takens, and Bleek (2000)
used a mixture of predictions and true values as input (Error Propagation, EP). Then Principal
Component Analysis (PCA) was applied to reduce the dimensionality of the time embedding
for the input from the 40 most recent inputs to 16 principal components. These were fed into
a MLP (with two hidden layers of 32 and 24 units) and trained with BPTT using conjugate
gradients. The value for the iterated prediction was achieved with a mixture of 90% clamped
output and 10% true value (true iteration corresponds to 100% clamped output). The value for
the iterated prediction was achieved without applying EP during training.

Kohlmorgen and Miiller (1998) pointed out that the prediction problem could be solved by
pattern matching, if it can be guaranteed that the best match from the past is always the right
one. To resolve ambiguities they propose to up-sample the data using linear extrapolation (as
done by Sauer, 1994).

The best result to date, according to our knowledge, was achieved by Weigend and Nix (1994).
They used a nonlinear regression approach in a maximum likelihood framework, realized with
feed-forward NN (25 inputs and 12 hidden units) using an additional output to estimate the
prediction error. For the iterated prediction the mean of the values at times 620-700 was used
as prediction after the predicted collapse of activity at time-step 1072 (this was based on visual
inspection). A similar approach was used by Eric J. Kostelich (1994), who searched for the best
match to an embedding of 75 steps using a local linear model.

McNames (2000) proposed a statistical method that used cross-validation error to estimate
the model parameters for local models, but the testing conditions were too different to include

72CHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

Reference Units | Para. Seq. NMSE
stepwise | iterated
Predict Input:
z(t+T)=x(t) - - - 0.96836 -
Linear Predictor - - - 1.25056 -
FIRN (Wan, 1994) 26 ~ 170 - 0.0230 0.0551
sFIRN (Wan, 1994) 26 ~ 170 - - 0.0273
MLP (Koskela et al., 1998) 70 ~ 30 - 0.01777 -
RSOM (Koskela et al., 1998) | 13 - - 0.0833 -
EP-MLP
(Bakker et al., 2000) 73 | >1300 - - 0.2159
(Sauer, 1994) - 32 - - 0.077
(Weigend & Nix, 1994) 27 ~ 180 - 0.0198 0.016
(Bontempi G., 1999) - - - - 0.029
MLP 16 177 [1-10* | 0.36322 >1
MLP 32 353 1-10* | 0.0996017 | 0.856932
MLP 64 769 | 1-10* | 0.101023 >1
MLP IT 32 353 1-10* | 0.158298 | 0.621936
LSTM 4 113 [1-10° | 0.395959 | 1.02102
LSTM IT 4 113 1-10° | 0.36422 0.96834

Table 7.3: Results for the FIR-laser task, showing (from left to right): The number of units, the
number of parameters (weights for NNs), the number of training sequence presentations, and
the NRMSE.

the results in the comparison. Bontempi G. (1999) used a similar approach called “ Predicted
Sum of Squares (PRESS)” (here, the dimension of the time embedding was 16).

7.4.2 Results

The results for MLP and LSTM are listed in Table 7.3. The results for these methods are not
as good as the other results listed in Table 7.3. This is true in part because we did not replace
predicted values by hand with a mean value where we suspected the system to be lead astray.

7.4.3 Analysis

The LSTM network could not predict the collapse of emission in the test set (Figure 7.6).
Instead, the network tracks the oscillation in the original series for only about 40 steps before
desynchronizing. This indicates performance similar to that in the Mackey-Glass task: the
LSTM network was able to track the strongest eigen-frequency in the task but was unable to
account for high-frequency variance. Though the MLP performed better, it generated inaccurate
amplitudes and also desynchronized after about 40 steps. The MLP did however manage to
predict the collapse of emission (Figure 7.6).

LSTM’s ability to track slow oscillations in the chaotic signal is notable. In simple cases,
synchronization with a periodic signal is easily achieved using mechanisms such as phase-locked
loops (PLLs). But when noisy or complex signals are used, synchronization can be challenging

7.5. CONCLUSION 73

200 | 2000

100 | 1 100

200 | 1200 ¢

100 | 1100 |

0 20 40 60 80 time 0 20 40 60 80 time

Figure 7.6: Test run with network solutions after iterated training for the FIR-laser task. Top:
LSTM. Bottom: MLP with 32 hidden units. Left: Single-Step prediction. Right: Iteration of
100 steps.

(McAuley, 1994; Large & Kolen, 1994). Systems like LSTM that can find periodicity in com-
plicated signals should be applicable to cognitive domains such as speech and music (Large &
Jones, 1999; Eck, 2000a). See also (Eck, 2000b) for more on this topic.

Iterated training yielded improved results for iterated prediction, even when stepwise pre-
diction made things worse, as in the case of MLP single-step prediction (prediction step size
one) for both the Mackey-Glass task and the FIR task. When multi-step prediction was used
(for Mackey-Glass only), iterated training did not improve system performance.

7.5 Conclusion

A time window based MLP outperformed the LSTM pure-AR approach on certain time series
prediction benchmarks solvable by looking at a few recent inputs only. Thus LSTM’s special
strength, namely, to learn to remember single events for very long, unknown time periods, was
not necessary here.

LSTM learned to tune into the fundamental oscillation of each series but was unable to
accurately follow the signal. The MLP, on the other hand, was able to capture some aspects
of the chaotic behavior. For example the system could predict the collapse of emission in the
FIR-laser task.

Iterated training has advantages over single-step training for iterated testing only for MLPs
and when the prediction step-size is one. The advantage is evident when the number of necessary
iterations is large.

Our results suggest to use LSTM only on tasks where traditional time window based ap-

TACHAPTER 7. TIME SERIES PREDICTABLE THROUGH TIME-WINDOW APPROACHES

proaches must fail. One reasonable hybrid approach to prediction of unknown time series may
be this: start by training a time window-based MLP, then freeze its weights and use LSTM only
to reduce the residual error if there is any, employing LSTM’s ability to cope with long time
lags between significant events.

LSTM’s ability to track slow oscillations in the chaotic signal may be applicable to cognitive
domains such as rhythm detection in speech and music.

Chapter 8

Conclusion

This work has concentrated on improving and applying the original LSTM algorithm as intro-
duced by Hochreiter and Schmidhuber (1997). We proposed to extended LSTM with forget
gates and peephole connections. Extended LSTM is clearly superior to traditional LSTM (and
other RNNs), and can serve as basis for future applications. Our findings reinforce the percep-
tion that LSTM is a very general and promising adaptive sequence processing device, with a
wider field of potential applications than alternative RNNs. In the following we summarize the
contributions of this thesis and present some thoughts about future work and possible LSTM
applications.

8.1 Main Contributions

Forget Gates. While previous work focused on training sequences with well-defined beginnings
and ends, typical real-world input streams are not a priori segmented into training subsequences
indicating network resets. Therefore RNNs should be able to learn appropriate self-resets. This
is also desirable for tasks with hierarchical but a priori unknown decompositions. For instance,
re-occurring subtasks should be solved by the same network module, which should be reset once
the subtask is solved. Forget gates naturally permit LSTM to learn local self-resets of memory
contents that have become irrelevant.

Forget gates also substantially improve LSTM’s performance on tasks involving arithmetic
operations, because they make the LSTM architecture more powerful.

Extending LSTM with peephole connections. We identified a weakness in the wiring
scheme of the multiplicative gates surrounding LSTM’s constant error carrousels (CECs). As
a remedy, we extend LSTM by introducing peephole connections from the CECs to the gates,
that allow them to inspect the current internal cell-states.

Timing. We tested LSTM on a special class of tasks that requires the network to extract
relevant information conveyed by the duration of intervals between events. We showed that
LSTM can solve such highly nonlinear tasks as well, by learning to precisely measure time
intervals, provided we furnish LSTM cells with peephole connections.

Context free and context sensitive languages. We show that LSTM outperforms other

75

76 CHAPTER 8. CONCLUSION

RNNSs on context free language (CFL) benchmarks. Moreover, LSTM is the first RNN to learn
a context sensitive language.

Time series prediction. Time window based MLPs outperformed a LSTM pure auto-
regressive approach on certain time series prediction benchmarks solvable by looking at a few
recent inputs only. Thus LSTM’s special strength, namely, to learn to remember single events
for very long, unknown time periods, was not necessary for those tasks.

8.2 Future work and possible applications of LSTM.

Gain adaptation. In our experiments we either used a constant learning rate (sometimes with
exponential or linear decay within sequences) or applied the rather simple momentum algorithm
(Plaut et al., 1986). More advanced local learning rate adaptation approaches like a decoupled
Kalman filtering (Puskorius & Feldkamp, 1994) or stochastic meta descent (Schraudolph, 1999,
2000) may improve learning speed and reduce the percentage of networks that diverge.

Hierarchical decomposition, rhythm and timing. LSTM with forget gates holds
promise for any sequential processing task in which we suspect that a hierarchical decomposition
may exist, but do not know in advance what this decomposition is (one example is prosodic in-
formation in speech). We showed that memory blocks equipped with forget gates and peephole
connections are capable of developing into internal oscillators and timers and that LSTM is able
to track slow oscillations in the chaotic signal. This may allow the recognition and generation
of hierarchical rhythmic patterns in music. In particular the ability to perform precise timing
and measuring makes LSTM a promising approach for real-world tasks whose solution partly
depend on the precise duration of intervals between relevant events.

Growing LSTM networks. It may be useful to grow LSTM networks (e.g., add one
memory block at a time), similar to the cascade-correlation algorithm (Fahlman, 1991), to
decouple blocks when tracking multiple frequencies in a signal. So far only the fundamental
frequency was tracked.

Time series prediction. For the prediction of unknown time series our results suggest to
use LSTM in a hybrid approach as follows: start by training a time window-based MLP, then
freeze its weights and use LSTM only to reduce the residual error if there is any, employing
LSTM’s ability to cope with long time lags between significant events. An example for a task
where a hybrid approach with LSTM might be promising is the prediction of secondary protein
structure from a sequence of amino acids (Brunak, Baldi, Frasconi, Pollastri, & Soda, 1999).
The standard solution involves using a fixed window over the protein sequence, centered over a
specific amino acid. As a protein is folded, acids that are far apart in the series of acids may
be spatially close and have significant interaction. This generates complex, varying long-term
dependencies in the series.

Appendix A

Embedded Reber Grammar
Statistics

The minimal length of an embedded Reber grammar (ERG) string is 9; string length have no
upper bound. To provide an idea of the string size distribution, Figure A.1 (left) shows a his-
togram of ERG strings computed from sampled data. We assume that ERG string probabilities
decrease exponentially with ERG string size (compare exponential fit on the left hand side of
Figure A.1), so that the probability p(l) of sampling a string of size [can be written as:

p(l) =D e 99 for | >9 elsep(l) =0 ,

with a,b > 0; the offset 9 expresses the minimum string length. To compute the probability
P(L) of sampling a string of size [< L we integrate p(l):

P(L) = / ' p(l) dl = g (1 _ e*a(LfQ))

25 T T T T 0.4
: Number ERG Strings in % ———
: logarihmic scale --------- 0.35
20 | | exponential fit -
H 0.3
15 L > 0.25
g 0.2
[
10 r % o1s
0.1
5 L
,,,,,,,,, 0.05
O L L 1! Ll 0 L L L L L L L L
30 40 50 60 0 10 20 30 40 50 60 70 80 90 100
ERG String Length Max. ERG String Length

Figure A.1: Left: histogram of 106 random samples of ERG string sizes. Right: Joint probability
that an ERG string of a given size occurs and is the longest among 80000.

7

APPENDIX A. EMBEDDED REBER GRAMMAR STATISTICS

-
oo

[o2]
o
[o2]
o

(4]
o

IN o
o o

IN
o

n
o

Expected Max. ERG String Length
n w
o o
Expected Max. ERG String Length
w
o

o

o

o

0
0 200000 400000 600000 800000 1e+06 1 10 100 1000 10000 100000 1e+06
Number Samples Number Samples

Figure A.2: Left: number of embedded Reber strings N plotted against lower bounds of expected
maximal string size 7(N). Right: logarithmic x-axis.

From normalization P(c0) = 1 follows a = b. Solving P(I) Z1- P(l) with the value a =~ &
extracted form the data (left hand side of Figure A.1), we find the expected ERG string size:

- 1 1
=0——1In(=)~11.54 . Al
l=o0 - n(2) 5 (A.1)

Given a set of N ERG strings, what is the expected maximal string length 7(N) 7 We derive
a lower bound Py (7) for the probability that a set of N ERG strings contains a string of size
> 7, assuming a sample of N — 1 strings of size < 7 and one of size > 7 (we set N — 1~ N):

Py(r)=N-P(r)VN-(1-P(1)) .

Figure A.1 (right) plots Py for N = 80000. The x-value of the distribution maximum is a lower
bound for 7(N = 80000). Figure A.2 plots N against the lower bound of 7(N).

T(N) grows logarithmically with N. For the test set we use in our experiments (N = 80000)
the expected maximal string length is about 50.

Appendix B

Peephole LSTM with Forget Gates
in Pseudo-code

The pseudo-code in this chapter describes the implementation of LSTM with forget gates and
peephole connections as introduced in the chapters 3 and 5. This is the LSTM version that we
currently use and recommend; the C code can be down-loaded from: “http://www.idsia.ch/ felix”.

The partial derivatives g—qf] are represented by the variables dS:

as defined in chapter 2, j indexes memory blocks and v indexes memory cells in block j; [= c;
for weights to the cell, [= in for weights to the input gate, and [= ¢ for weights to the forget
gate. The variables dS are calculated no matter if a target (and hence an error) is given or
not. Thus their calculation is done in the forward pass. Whereas the backward pass is only
calculated at time steps when a target is present.

It is task-specific (see descriptions in chapters) when the weight-updates are executed: After
each step time, regularly after a fixed number of time steps, after intervals with varying duration
or at the and of a sequence or epoch.

The momentum algorithm (Plaut et al., 1986), that we used for some of our experiments, is

not incorporated into this pseudo-code.

79

80 APPENDIX B. PEEPHOLE LSTM WITH FORGET GATES IN PSEUDO-CODE

init network:

reset: CECs: sc}):§c}):0; partials: dS=0; activations: y=4=0;
forward pass:

input units: y = current external input;

roll over: activations: §j=y; cell states: §c}; =5cv3

loop over memory blocks, indexed j {

Step la: input gates (5.1):

~ S; ~ in.
netin; = 3 Wingm ™ + 201y Wingey Sevs Y™ = fin;(netin;);
Step 1b: forget gates (5.2):
~ S; N]
nety; = Zm We,m Y7 + E'u]zl Wejcy Scvs y¥ = f%‘ (net%);

Step 1c: CECs, i.e the cell states (5.3):
loop over the S; cells in block j, indexed v {
netey = 3., Wesm §™5 Sey = Y99 Ser +y™ g(neter);)
Step 2:
output gate activation: (5.4):
Netout; = Y Woutym ™ + S0ty Woutsey Sevs YU = fout; (Ne€tout;);
cell outputs (5.5):
loop over the S; cells in block j, indexed v { yCi = youti Scv }
} end loop over memory blocks
output units (2.9): nety =3, wem ¥ y* = fr(nety);
partial derivatives:
loop over memory blocks, indexed j {

loop over the S; cells in block j, indexed v {

1 0 c¥
cells (5.6), (dSi, == s Y

awc}.’ m

dSiy, = dSiz, y*s + g (netes) y™ §™;

: Ds.t - Dse
input gates (5.7), (5.7b), (5}, = gy » 45) 0 1= g)
G4 znjc;.’

dsi’ =dsiv yei +g(neter) fin, (netin;) 975

in,m in,m in

loop over peephole connections from all cells, indexed v’ {

ds? ., =dS? ., y®i + g(netey) fl,, (netin;) 575 }
i 9s v v 0s,v
forget gates (5.8), (5.8b), (dSim = T dS;cv, = g)t
jm ' ch;?

dSiv, =dSiy, y%i + ey [y (nety,) 9™;

m ¥j
loop over peephole connections from all cells, indexed v’ {
jvo _ Jjv ; N ' .
dSw?, = dS(pcv, Yo + S fo (nety;) 805}

J J

} } end loops over cells and memory blocks

backward pass (if error injected):

errors and Js:

injection error: e = t* — y¥;

ds of output units (5.10): & = fi(nety) ex;

loop over memory blocks, indexed j {

0s of output gates (5.11b):
dout; = féut]- (netout;) (251:1 Scy Dok Whey 619)3

internal state error (5.15):
loop over the S; cells in block j, indexed v {
€sey = Y (Ek Wkey 5k); }
} end loop over memory blocks
weight updates:
output units (5.9): Awg,, = a & y™;
loop over memory blocks, indexed j {
output gates (5.11a):
AWoutm = @ Gout ™3 AWout,ey = @ Gout Scy;
input gates (5.13):
Awin,m = O‘Efil esc}a d‘s’zj:,m;
loop over peephole connections from all cells, indexed v’
Awin,c;' :azf;1 Esey dSZ:’C},,; }
forget gates (5.14):
Awgm = aZfil €.y dsiy,;
loop over peephole connections from all cells, indexed v’

_ S; Jjv o,
Awwc;, =ad .l esc; dSW;,, }

cells (5.12):
loop over the S; cells in block j, indexed v {

ch;m=a €s.y dsiv; };

} end loop over memory blocks

{

{

81

82 APPENDIX B. PEEPHOLE LSTM WITH FORGET GATES IN PSEUDO-CODE

References

Bakker, B., & Kleij, G. van der Voort van der. (2000). Trading off perception with internal state:
Reinforcement learning and analysis of g-elman networks in a markovian task. In Proceedings of
IJCNN 2000. Como, Italy.

Bakker, R., Schouten, J. C., Giles, C. L., Takens, F., & Bleek, C. M. van den. (2000). Learning chaotic
attractors by neural networks. Neural Computation, 12(10).

Bengio, Y., & Frasconi, P. (1995). An input output HMM architecture. In Advances in Neural Information
Processing Systems 7. San Mateo CA: Morgan Kaufmann.

Bengio, Y., Frasconi, P., Gori, M., & G.Soda. (1993). Recurrent neural networks for adaptive temporal
processing. In Proceedings of the 6th italian workshop on parallel architectures and neural networks
wirn98 (pp. 85-117). Vietri (Italy): World Scientific Pub.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.

Bersini, H., Birattari, M., & Bontempi, G. (1998). Adaptive memory-based regression methods. In In
Proceedings of the 1998 IEEFE International Joint Conference on Neural Networks (pp. 2102-2106).

Blair, A. D., & Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural Computation, 9(5),
1127-1142.

Bontempi G., B. H., Birattari M. (1999). Local learning for iterated time-series prediction. In B. I. &
D. S. (Eds.), Machine Learning: Proceedings of the Sizteenth International Conference (p. 32-38).
San Francisco, USA: Morgan Kaufmann.

Box, G., & Jenkins, G. (1970”). Time series analysis — forecasting and control; san francisco: Holden-day.

Brunak, S., Baldi, P., Frasconi, P., Pollastri, G., & Soda, G. (1999). Exploiting the past and the future
in protein secondary structure prediction. Bioinformatics, 15(11).

Casey, M. P. (1996). The dynamics of discrete-time computation, with application to recurrent neural
networks and finite state machine extraction. Neural Computation, 8(6), 1135-1178.

Chudy, L., & Farkas, I. (1998). Prediction of chaotic time-series using dynamic cell structuresand local
linear models. Neural Network World, 8(5), 481-489.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state automata and simple
recurrent networks. Neural Computation, 1, 372-381.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential programs. In
J. Grefenstette (Ed.), Proceedings of an international conference on genetic algorithms and their
applications. Hillsdale NJ: Lawrence Erlbaum Associates.

Crowder, R. S. (1990). Predicting the mackey-glass timeseries with cascadecorrelation learning. In
D.S. T. (ed) (Ed.), Connectionist Models: Proceedings of the 1990 Summer School.

Cummins, F., Gers, F., & Schmidhuber, J. (1999). Language identification from prosody without explicit
features. In Proceedings of EUROSPEECH’99 (Vol. 1, pp. 371-374).

83

84 REFERENCES

Darken, C. (1995). Stochastic approximation and neural network learning. In M. A. Arbib (Ed.), The
Handbook of Brain Theory and Neural Networks (pp. 941-944). Cambridge, Massachusetts: MIT

Press.

Das, S., Giles, C., & Sun, G. (1992). Learning context-free grammars: Capabilities and limitations of a
recurrent neural network with an external stack memory. In Proceedings of The Fourteenth Annual
Conference of the Cognitive Science Society (pp. 791-795). San Mateo, CA: Morgan Kaufmann
Publishers.

Day, S. P., & Davenport, M. R. (1993). Continuous-time temporal back-progagation with adaptive time
delays. IEEE Transactions on Neural Networks, 4, 348-354.

Deco, G., & Schiirmann, B. (1994). Neural learning of chaotic system behavior. IEICE Trans. Funda-
mentals, E77-A, 1840-1845.

Dickmanns, D., Schmidhuber, J., & Winklhofer, A. (1987). Der genetische Algorithmus: Eine Imple-
mentierung in Prolog. Fortgeschrittenenpraktikum, Institut fir Informatik, Lehrstuhl Prof. Radig,
Technische Universitdt Minchen.

Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time backpropagation
learning. Neural Networks, 2(5), 375-385.

Eck, D. (2000a). Meter Through Synchrony: Processing Rhythmical Patterns with Relax-
ation Oscillators. Unpublished doctoral dissertation, Indiana University, Bloomington, IN.,
(www.idsia.ch/~doug/publications.html).

Eck, D. (2000b). Tracking rhythms with a relaxation oscillator (Tech. Rep. No. IDSIA-10-00).
www.idsia.ch/techrep.html, Galleria 2, 6928 Manno-Lugano, Switzerland: IDSIA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

Eric J. Kostelich, D. P. L. (1994). The prediction of chaotic time series: a variation on the method of
analogues. In W. A. S. & G. N. A. (Eds.), Time Series Prediction: Forecasting the Future and
Understanding the Past (pp. 283-295). Addison-Wesley.

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In R. P. Lippmann, J. E.
Moody, & D. S. Touretzky (Eds.), NIPS 8 (p. 190-196). San Mateo, CA: Morgan Kaufmann.

Falco, I. de, Tazzetta, A., Natale, P., & Tarantino, E. (1998”). Evolutionary neural networks for nonlinear
dynamics modeling. In Parallel Problem Solving from Nature 98 (Vol. 1498, p. 593-602). Springer.

Forcada, M. L., & Carrasco, R. C. (1995). Learning the initial state of a second-order recurrent neural
network during regular-language inference [Letter]. Neural Computation, 7(5), 923-930.

Gers, F. A., Eck, D., & Schmidhuber, J. (2000). Applying LSTM to time series predictable through
time-window approaches (Tech. Rep. No. IDSIA-22-00). Manno, CH: IDSIA.

Gers, F. A, Eck, D., & Schmidhuber, J. (2001a). Applying LSTM to time series predictable through
time-window approaches. In Proc. ICANN 2001, Int. Conf. on Artificial Neural Networks. Vienna,
Austria: IEE, London. (submitted)

Gers, F. A., Eck, D., & Schmidhuber, J. (2001b). Applying LSTM to time series predictable through
time-window approaches. In Neural nets, WIRN vietri-99, proceedings 11th workshop on neural
nets. Vietri sul Mare, Italy. (submitted)

Gers, F. A., & Schmidhuber, J. (2000a). Neural processing of complex continual input streams. In Proc.
IJCNN’2000, Int. Joint Conf. on Neural Networks. Como, Italy.

Gers, F. A., & Schmidhuber, J. (2000b). Neural processing of complex continual input streams (Tech.
Rep. No. IDSIA-02-00). Manno, CH: IDSTA.

Gers, F. A., & Schmidhuber, J. (2000c). Recurrent nets that time and count. In Proc. IJCNN’2000, Int.
Joint Conf. on Neural Networks. Como, Italy.

REFERENCES 85

Gers, F. A., & Schmidhuber, J. (2000d). Recurrent nets that time and count (Tech. Rep. No. IDSIA-01-
00). Manno, CH: IDSIA.

Gers, F. A., & Schmidhuber, J. (2000e). LSTM learns context free languages. In Snowbird 2000
Conference.

Gers, F. A., & Schmidhuber, J. (2000f). Long Short-Term Memory learns context free languages and
context sensitive languages (Tech. Rep. No. IDSIA-03-00). Manno, CH: IDSTA.

Gers, F. A., & Schmidhuber, J. (2001a). LSTM recurrent networks learn simple context free and context
sensitive languages. IEEFE Transactions on Neural Networks. (accepted)

Gers, F. A., & Schmidhuber, J. (2001b). Long Short-Term Memory learns context free and context
sensitive languages. In Proceedings of the ICANNGA 2001 conference. Springer. (accepted)

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999a). Continual prediction using LSTM with forget
gates. In M. Marinaro & R. Tagliaferri (Eds.), Neural Nets, WIRN Vietri-99, Proceedings 11th
Workshop on Neural Nets (p. 133-138). Vietri sul Mare, Italy: Springer Verlag, Berlin.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999b). Learning to forget: Continual prediction with
LSTM. In Proc. ICANN’99, Int. Conf. on Artificial Neural Networks (Vol. 2, p. 850-855). Edin-
burgh, Scotland: TEE, London.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999c). Learning to forget: Continual prediction with
LSTM (Tech. Rep. No. IDSIA-01-99). Lugano, CH: IDSTA.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10), 2451-2471.

Gers, F. A., Schmidhuber, J., & Schraudolph, N. Learning precise timing with LSTM recurrent networks.
(submitted to Neural Computation)

Haffner, P., & Waibel, A. (1992). Multi-state time delay networks for continuous speech recognition. In
J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in Neural Information Processing
Systems (Vol. 4, pp. 135-142). Morgan Kaufmann Publishers, Inc.

Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann Machines: Constraint satisfaction
networks that learn (Tech. Rep. No. CMU-CS-84-119). Carnegie Mellon University.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut fir
Informatik, Lehrstuhl Prof. Brauer, Technische Universitit Minchen. (See www7.informatik.tu-
muenchen.de/ hochreit)

Hochreiter, S., & Schmidhuber, J. (1995). Long short-term memory can solve hard long time lag problems.
In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing
systems 7 (NIPS ”9/). Cambridge, MA: MIT Press.

Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight guessing and “Long Short-
Term Memory”. In F. L. Silva, J. C. Principe, & L. B. Almeida (Eds.), Spatiotemporal models in
biological and artificial systems (p. 65-72). I0S Press, Amsterdam, Netherlands. (Serie: Frontiers
in Artificial Intelligence and Applications, Volume 37)

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-
1780.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational
facilities. Proceedings of the National Academy of Sciences of the USA, 79, 2554-2558.

Huebner, U., Abraham, N. B., & Weiss, C. O. (1989). Dimensions and entropies of chaotic intensity
pulsations in a single-mode far-infrared nh3 laser. Phys. Rev. A, 40, 6354.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. In
Proceedings of the Eighth Annual Cognitive Science Society Conference. Hillsdale, NJ: Erlbaum.

86 REFERENCES

Kalinke, Y., & Lehmann, H. (1998). Computation in recurrent neural networks: From counters to
iterated function systems. In G. Antoniou & J. Slaney (Eds.), Advanced Topics in Artificial Intel-
ligence, Proceedings of the 11th Australian Joint Conference on Artificial Intelligence (Vol. 1502).
Berlin,Heidelberg: Springer.

Kohlmorgen, J., & Miiller, K.-R. (1998). Data set a is a pattern matching problem. Neural Processing
Letters, 7(1), 43-47.

Koskela, T., Varsta, M., Heikkonen, J., & Kaski, K. (1998). Recurrent SOM with local linear models
in time series prediction. In 6th European Symposium on Artificial Neural Networks. ESANN’98.
Proceedings. D-Facto, Brussels, Belgium (pp. 167-72).

Koza, J. R. (1992). Genetic programming. Cambridge, MA: MIT Press.

Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using neural networks: Prediction and sig-
nal modeling (Tech. Rep. Nos. LA-UR-87-2662). Los Alamos, New Mexico: Los Alamos National
Laboratory.

Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events.
Psychological Review, 106(1), 119-159.

Large, E. W., & Kolen, J. F. (1994). Resonance and the perception of musical meter. Connection Science,
6, 177-208.

LeCun, Y., Bottou, L., Orr, G., & Miiller, K.-R. (1998). Efficient backprop. In G. B. Orr & K.-R. Miiller
(Eds.), Neural Networks—Tricks of the Trade (Vol. 1524, p. 5-50). Berlin: Springer Verlag.

Lee, L. (1996). Learning of context-free languages: A survey of the literature (Tech. Rep. No. TR-12-96).
Center for Research in Computing Technology, Harvard University, Cambridge, Massachusetts.

Lin, T., Horne, B. G., Tifo, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX
recurrent neural networks [Paper]. IEEE Transactions on Neural Networks, 7(6), 1329-1338.

Mackey, M., & Glass, L. (1977). Oscillation and chaos in a physiological control system. Science,
197(287).

Martinez, T. M., Berkovich, S. G., & Schulten, K. J. (1993). Neural-gas network for vector quantization
and its application to time-series prediction [Paper]. IEEE Transactions on Neural Networks, 4(4),
558-569.

McAuley, J. (1994). Finding metrical structure in time. In M. Mozer, P. Smolensky, D. Touretsky,
J. Elman, & A. S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School
(pp. 219-227). Hillsdale, NJ: Erlbaum.

McNames, J. (2000). Local modeling optimization for time series prediction. In In Proceedings of the
8th European Symposium on Artificial Neural Networks (p. 305-310). Bruges, Belgium.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological Review(63), 81-97.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: A
unifying view. Machine Learning, 1, 47-80.

Mozer, M. C. (1989). A focused backpropagation algorithm for temporal pattern processing. Complex
Systems, 3, 349-381.

Mozer, M. C. (1992). Induction of multiscale temporal structure. In D. S. Lippman, J. E. Moody, &
D. S. Touretzky (Eds.), Advances in Neural Information Processing Systems 4 (p. 275-282). San
Mateo, CA: Morgan Kaufmann.

Mozer, M. C. (1993). Neural net architectures for temporal sequences processing. In A. S. Weigend
& N. A. Gershenfeld (Eds.), Time series prediction: Forecasting the future and understanding the
past (Vol. 15, pp. 243-264). Reading, MA: Addison Wesley.

REFERENCES 87

Osborne, M., & Briscoe, E. (1997). Learning stochastic categorial grammars. In Proceedings of the
Assoc. for Comp. Linguistics, Comp. Nat. Lg.Learning (CoNLL97) Workshop (pp. 80-87). Madrid.
(http://citeseer.nj.nec.com/osborne97learning.html)

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural networks: A survey. IEEE
Transactions on Neural Networks, 6(5), 1212-1228.

Platt, J. (1991). A resource-allocating network for function interpolation. Neural Computation, 3,
213-225.

Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Ezperiments on learning back propagation (Tech.
Rep. Nos. CMU-CS-86-126). Pittsburgh, PA: Carnegie-Mellon University.

Porter, Bruce, W., Bareiss, R., & Holte, R. C. (1990). Concept learning and heuristic classification in
weak-theory domains. Artificial Intelligence, 45(1-2), 229-263.

Principe, J. C., & Kuo, J.-M. (1995). Dynamic modelling of chaotic time series with neural networks. In
G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural Information Processing Systems
(Vol. 7, pp. 311-318). The MIT Press.

Principe, J. C., Rathie, A., & Kuo, J. M. (1992). Prediction of chaotic time series with neural networks
and the issue of dynamic modeling. Int. J. of Bifurcation and Chaos, 2(4), 989-996.

Puskorius, G. V., & Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical systems with Kalman
filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2), 279-297.

Quinlan, J. (1992). Programs for machine learning. Morgan Kaufmann.

R. Bone, Crucianu, M., Verley, G., & Asselin de Beauville, J.-P. (2000). A bounded exploration approach
to constructive algorithms for recurrent neural networks. In Proceedings of IJCNN 2000. Como,
Ttaly.

Ring, M. B. (1994). Continual learning in reinforcement environments. Unpublished doctoral dissertation,
University of Texas at Austin, Austin, Texas 78712.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network (Tech. Rep.
No. CUED/F-INFENG/TR.1). Cambridge University Engineering Department.

Rodriguez, P., & Wiles, J. (1998). Recurrent neural networks can learn to implement symbol-sensitive
counting. In Advances in Neural Information Processing Systems (Vol. 10, p. 87-93). The MIT
Press.

Rodriguez, P., Wiles, J., & Elman, J. (1999). A recurrent neural network that learns to count. Connection
Science, 11(1), 5-40.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representation by er-
ror propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing:
Ezplorations in the microstructure of cognition (Vol. 1, pp. 318-362). Cambridge, MA: MIT Press.

Sakakibara, Y. (1997). Recent advances of grammatical inference. Theoretical Computer Science, 185(1),
15-45.

Satustowicz, R. P., & Schmidhuber, J. (1997). Probabilistic incremental program evolution: Stochastic
search through program space. In M. van Someren & G. Widmer (Eds.), Machine Learning: ECML-
97, Lecture Notes in Artificial Intelligence 1224 (p. 213-220). Springer-Verlag Berlin Heidelberg.

Sauer, T. (1994). Time series prediction using delay coordinate embedding. In A. S. Weigend & N. A.
Gershenfeld (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past.
Addison-Wesley.

Schmidhuber, J. (1989). The Neural Bucket Brigade, a local learning algorithm for dynamic feedforward
and recurrent networks. Connection Science, 1(4), 403-412.

88 REFERENCES

Schmidhuber, J. (1992a). A fixed size storage O(n®) time complexity learning algorithm for fully recurrent
continually running networks. Neural Computation, 4(2), 243-248.

Schmidhuber, J. (1992b). Learning complex, extended sequences using the principle of history compres-
sion. Neural Computation, 4(2), 234-242.

Schmidhuber, J., & Hochreiter, S. (1996). Guessing can outperform many long time lag algorithms (Tech.
Rep. No. IDSIA-19-96). IDSIA.

Schraudolph, N. (1999). Local gain adaptation in stochastic gradient descent. In Proceedings of the 9th
International Conference on Artificial Neural Networks. London: IEE.

Schraudolph, N. N. (2000). Fast second-order gradient descent via O(n) curvature matriz-vector products
(Tech. Rep. No. IDSTA-12-00). Galleria 2, CH-6928 Manno, Switzerland: Istituto Dalle Molle di
Studi sull’Intelligenza Artificiale. (Submitted to Neural Computation)

Siegelmann, H. (1992). Theoretical foundations of recurrent neural networks. Unpublished doctoral
dissertation, Rutgers, New Brunswick Rutgers, The State of New Jersey.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied Mathematics
Letters, 4(6), 77-80.

Smith, A. W., & Zipser, D. (1989). Learning sequential structures with the real-time recurrent learning
algorithm. International Journal of Neural Systems, 1(2), 125-131.

Steijvers, M., & Grunwald, P. (1996). A recurrent network that performs a contextsensitive prediction
task. In Proceedings of the 18th Annual Conference of the Cognitive Science Society. Erlbaum.

Sun, G., Chen, H., & Lee, Y. (1993). Time warping invariant neural networks. In J. D. C. S. J. Hanson &
C. L. Giles (Eds.), Advances in Neural Information Processing Systems 5 (p. 180-187). San Mateo,
CA: Morgan Kaufmann.

Sun, G. Z., Giles, C. L., Chen, H. H., & Lee, Y. C. (1993). The neural network pushdown automaton:
Model, stack and learning simulations (Technical Report No. CS-TR-3118). University of Maryland,
College Park.

Tonkes, B., & Wiles, J. (1997). Learning a context-free task with a recurrent neural network: An analysis
of stability. In Proceedings of the Fourth Biennial Conference of the Australasian Cognitive Science
Society.

Townley, S., lchmann, A., Weiss, M. G., McClements, W., Ruiz, A. C., Owens, D., & Praetzel-Wolters,
D. (1999). Existence and learning of oscillations in recurrent neural networks (Tech. Rep. No.
AGTM 202). Kaiserslautern, Germany: Universitaet Kaiserslautern, Fachbereich Mathematik.

Tsoi, A. C., & Back, A. D. (1994). Locally recurrent globally feedforward networks: A critical review of
architectures. IEEE Transactions on Neural Networks, 5(2), 229-2309.

Tsung, F. S., & Cottrell, G. W. (1989). A sequential adder using recurrent networks. In Proceedings of
the First International Joint Conference on Neural Networks, Washington, DC. San Diego: IEEE
TAB Neural Network Committee.

Tsung, F.-S., & Cottrell, G. W. (1995). Phase-space learning. In Advances in Neural Information
Processing Systems (Vol. 7, pp. 481-488). The MIT Press.

Vesanto, J. (1997). Using the SOM and local models in time-series prediction. In Proceedings of
WSOM’97, Workshop on Self-Organizing Maps, Espoo, Finland, June 4—6 (pp. 209-214). Espoo,
Finland: Helsinki University of Technology, Neural Networks Research Centre.

Vijay-Shanker, K. (1992). Using descriptions of trees in a tree adjoining grammar. Computational
Linguistics, 18(4), 481-517.

Waibel, A. (1989). Modular construction of time-delay neural networksfor speech recognition [Letter].
Neural Computation, 1(1), 39-46.

REFERENCES 89

Wan, E. A. (1994). Time series prediction by using a connectionist network with internal time delays.
In W. A. S. & G. N. A. (Eds.), Time Series Prediction: Forecasting the Future and Understanding
the Past (pp. 195-217). Addison-Wesley.

Weigend, A., & Gershenfeld, N. (1993”). Time series prediction: Forecasting the future and understanding
the past. Addison-Wesley.

Weigend, A. S., & Nix, D. A. (1994). Predictions with confidence intervals (local error bars). In
Proceedings of the International Conference on Neural Information Processing (ICONIP’94) (pp.
847-852). Seoul, Korea.

Weiss, M. G. (1999). Learning oscillations using adaptive control (Tech. Rep. No. AGTM 178). Kaiser-
slautern, Germany: Universitaet Kaiserslautern, Fachbereich Mathematik.

Werbos, P. J. (1988). Generalisation of backpropagation with application to a recurrent gas market
model. Neural Networks, 1, 339-356.

Wiles, J., & Elman, J. (1995). Learning to count without a counter: A case study of dynamics and acti-
vation landscapes in recurrent networks. In In Proceedings of the Seventeenth Annual Conference
of the Cognitive Science Society (pp. pages 482 — 487). Cambridge, MA: MIT Press.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent
network trajectories [Letter]. Neural Computation, 2(4), 490-501.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent net
works. Neural Computation, 1(2), 270-280.

Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for recurrent networks and their
computational complexity. In Y. Chauvin & D. E. Rumelhart (Eds.), Back-propagation: Theory,
Architectures and Applications (pp. 433-486). Hillsdale, NJ: Erlbaum.

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural networks. IEEE
Transactions on Neural Networks, 8(3), 694-713.

Zelle, J., & Mooney, R. (1993). Learning semantic grammars with constructive inductive logic program-
ming. In Proceedings of the 11th national conference on artificial intelligence, aaai (pp. 817-822).
MIT Press.

Zeng, Z., Goodman, R., & Smyth, P. (1994”). Discrete recurrent neural networks for grammatical
inference. IEEE Transactions on Neural Networks, 5(2).

90

Personal Record

Name

Date of birth
Place of birth
Nationality
Marital status

Parents

Education

Work

Personal Record

Lugano, January 30, 2001

Felix Alexander Gers

15.11.1970

Freiburg/Br. (Germany)
German

single

Dietmar Gers
Erika Gers born Marschner

1976 - 1980 Primary school
1980 - 1982 Orientation school
1982 - 1989 High school (grammar-school)
Bismarckschule Hannover
qualification for admission
to a university (Abitur)
1989 - 1995 Study of physics
at the University of Hannover
1991 Intermediate examination
1995 Master degree
(Diplom) in physics
at the University of Hannover

1996 - 1997 Advanced Telecommunication
Research Center (ATR, Kyoto, Japan),
Human Information Processing Laboratories,
Evolutionary Systems Department

1997 Laser Zentrum Hanover (LZH), Germany,
Optical Measurement Techniques Group

1997 - Istituto Dalle Molle di Studi sull’Intelligenza
Artificiale (IDSTA, Lugano, Switzerland),
Neural Network Group

Personal Record 91

Publications

Gers, F. A., Eck, D., & Schmidhuber, J. Applying LSTM to time series predictable
through time-window approaches. In Neural Nets, WIRN Vietri-99, Proceedings 11th
Workshop on Neural Nets.

Cummins, F., Gers, F., & Schmidhuber, J. (1999). Language identification from prosody
without explicit features. In Proceedings of EUROSPEECH’99 (Vol. 1, pp. 371-374).

Cummins, F., Gers, F. A., & Schmidhuber, J. (1999). Automatic discrimination among
languages based on prosody alone (Tech. Rep. No. IDSTA-03-99). Lugano, CH: IDSTA.

De Garis, H., Gers, F. A., Korkin, M., Agah, A., & Nawa, N. E. (1998). Building an
artificial brain using an FPGA based ’'CAM-brain machine’. Artificial Life and Robotics
Journal, 2, 56-61.

Gers, F. A., & Czarske, J. W. (1995). Untersuchungen zur verteilten temperatur-sensorik
mit stimulierter brillouin-streuung. In Laser’95 Conference Proceedings C P22.

Gers, F. A., & De Garis, H. (1996a). Porting a cellular automata based artificial brain to
MIT’s cellular automata machine ?CAM-8”. In Int. Conf. on Simulated Evolution and
Learnin (SEAL) S7-3, Taejon, Korea.

Gers, F. A., & De Garis, H. (1996b). CAM-brain : A new model for ATR’s cellular
automata based artificial brain project. In Int. Conf. on Evolvable Systems Conference
Proceedings (ICES) S§7-5, Tsukuba, Japan.

Gers, F. A., & De Garis, H. (1997). Codi-1bit : A simplified cellular automata based
neuron model. In Artificial Evolution Conference (AE), Nimes, France.

Gers, F. A., De Garis, H., & Korkin, M. (1997a). Evolution of neural sructures based on
cellular automata. In C. J. Lakhmi (Ed.), Soft computing techniques in knowlage-based
intelligent engineering systems (p. 259-278). Heidelberg New York: Physica-Verlag.

Gers, F. A., De Garis, H., & Korkin, M. (1997b). A simplified cellular automata based
neuron model. In J. Hao, E. Lutton, E. Ronald, M. Schoennauer, & D. Snyers (Eds.),
Artificial Evolution (p. 315-334). Springer Verlag.

Gers, F. A., De Garis, H., & Korkin, M. (1998). Codi-1bit : A cellular automata
based neural net model simple enough to be implemented in evolvable hardware. In
Int.Symposium on Artificial Life and Robotics (AROB), Beppu, Oita, Japan.

Gers, F. A., Eck, D., & Schmidhuber, J. (2000). Applying LSTM to time series predictable
through time-window approaches (Tech. Rep. No. IDSIA-22-00). Manno, CH: IDSTA.

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time series predictable
through time-window approaches. In Proc. ICANN 2001, Int. Conf. on Artificial Neural
Networks. Vienna, Austria: IEE, London. (submitted)

Gers, F. A., & Schmidhuber, J. Long short-term memory learns context free and context
sensitive languages. In ICANNGA 2001 Conference. (accepted)

92

Personal Record

Gers, F. A., & Schmidhuber, J. (2000a). LSTM learns context free languages. In Snowbird
2000 Conference.

Gers, F. A., & Schmidhuber, J. (2000b). Long short-term memory learns context free
languages and context sensitive languages (Tech. Rep. No. IDSIA-03-00). Manno, CH:
IDSIA.

Gers, F. A., & Schmidhuber, J. (2000c). Neural processing of complex continual input
streams. In Proc. IJCNN’2000, Int. Joint Conf. on Neural Networks. Como, Italy.

Gers, F. A., & Schmidhuber, J. (2000d). Neural processing of complex continual input
streams (Tech. Rep. No. IDSIA-02-00). Manno, CH: IDSTA.

Gers, F. A., & Schmidhuber, J. (2000e). Recurrent nets that time and count. In Proc.
IJCNN’2000, Int. Joint Conf. on Neural Networks. Como, Italy.

Gers, F. A., & Schmidhuber, J. (2000f). Recurrent nets that time and count (Tech. Rep.
No. IDSTA-01-00). Manno, CH: IDSIA.

Gers, F. A., & Schmidhuber, J. (2001). Long short-term memory learns simple context
free and context sensitive languages. IEEE Transactions on Neural Networks. (accepted)

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999a). Continual prediction using LSTM
with forget gates. In M. Marinaro & R. Tagliaferri (Eds.), Neural Nets, WIRN Vietri-99,
Proceedings 11th Workshop on Neural Nets (p. 133-138). Vietri sul Mare, Italy: Springer
Verlag, Berlin.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999b). Learning to forget: Continual
prediction with LSTM. In Proc. ICANN’99, Int. Conf. on Artificial Neural Networks
(Vol. 2, p. 850-855). Edinburgh, Scotland: IEE, London.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999c). Learning to forget: Continual
prediction with LSTM (Tech. Rep. No. IDSTA-01-99). Lugano, CH: IDSTA.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10), 2451-2471.

Gers, F. A., Schmidhuber, J., & Schraudolph, N. Learning precise timing with LSTM
recurrent networks. (submitted to Neural Computation)

Hough, M., De Garis, H., Korkin, M., Gers, F. A., & Nawa, N. E. (1999). Spiker : Analog
waveform to digital spiketrain conversion in atr’s artificial brain ”cam-brain” project. In
Int. Conf. on Robotics and Artificial Life, Beppu, Japan.

Korkin, M., De Garis, H., Gers, F., & Hemmi, H. (1997). ’CBM (CAM-brain machine) :
A hardware tool which evolves a neural net module in a fraction of a second and runs a
million neuron artificial brain in real time. In Genetic Programming Conference, Stanford,
USA.

Nawa, N. E., De Garis, H., Gers, F. A., & Korkin, M. (1998). ’ATR’s CAM-brain
machine (CBM) simulation results and representation issues. In Genetic Programming
Conference.

Personal Record

93

94 Acknowledgments

Acknowledgments

I am grateful to everybody who helped me to start, do and finish this thesis.
Special thanks go to my parents who always supported me in everything I wanted to do.

This thesis was only possible, because Juergen Schmidhuber set up the LSTM project at IDSTA
including the position that I took in the last years. During all my time at IDSIA Juergen always
left me the freedom to follow my own ideas. He was excellent as scientific reference point and
as critic to test my ideas against. I greatly appreciated working with him.

I want to thank Wulfram Gerstner for accepting the supervision over the theses. His critical
feedback was always very helpful for my work.

I always enjoyed exchanging ideas with Doug and Fred, who worked with me on the LSTM
project.

My deep thanks go to Mara for all the things she did for me during my time in Lugano. Rafal
accompanied me, working on his thesis, from the day of my interview until now, and I hope we
can also celebrate the “the days after” (for both of us) together. Nic was always there for any
scientific discussion down into painful details. Everything would have been much more difficult
without Ivo driving me through the last part of the thesis while I could not walk. Marco ” Zaffa”
helped to transform my Italian into Italian.

Thanks to everybody at IDSIA and Old-IDSIA for creating a great atmosphere for working with
lots of fun.

The persons I mentioned, but also many others outside and around IDSTA did much more for
me when I want to write here. They know.

